CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 6905
WANG Wen-tao, WANG Guo-zhao. Bézier curves with shape parameter[J]. Journal of Zhejiang University Science A, 2005, 6(6): 497-501.
@article{title="Bézier curves with shape parameter",
author="WANG Wen-tao, WANG Guo-zhao",
journal="Journal of Zhejiang University Science A",
volume="6",
number="6",
pages="497-501",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0497"
}
%0 Journal Article
%T Bézier curves with shape parameter
%A WANG Wen-tao
%A WANG Guo-zhao
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 6
%P 497-501
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0497
TY - JOUR
T1 - Bézier curves with shape parameter
A1 - WANG Wen-tao
A1 - WANG Guo-zhao
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 6
SP - 497
EP - 501
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0497
Abstract: In this paper, bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier basis with shape parameter is constructed by an integral approach. Based on this basis, we define the bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier curves with shape parameter. The bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier basis curves with shape parameter have most properties of bernstein basis and the bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier curves. Moreover the shape parameter can adjust the curves’ shape with the same control polygon. As the increase of the shape parameter, the bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier curves with shape parameter approximate to the control polygon. In the last, the bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier surface with shape parameter is also constructed and it has most properties of bé%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>bézier surface.
[1] Chen, Q.Y., Wang, G.Z., 2003. A class of Bézier-like curves. Computer Aided Geometric Design, 20:29-39.
[2] Goodman, T.N.T., Said, H.B., 1991. Properties of generalized Ball curves and surfaces. Computer Aided Design, 23(8):554-560.
[3] Mainar, E., Peńa, J.N., Sânchez-Reys, J., 2001. Shape preserving alternatives to the rational Bézier model. Computer Aided Geometric Design, 15:909-923.
[4] Said, H.B., 1989. Generalized Ball curve and its recursive algorithm. ACM Transaction on Graphics, 8(4):360-371.
[5] Wang, W.T., Wang, G.Z., 2004. Uniform B Spline with Shape Parameter. Journal of Computer-Aided Design & Computer Graphics, 16(6):783-788.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
reenu@Rani Durgawati University<reenusharma6@rediff.com>
2012-01-12 13:24:34
I am doing Ph.D. on the topic spline curves.
tled "Bézier curves with shape parameter" will defenitly help me for my studies.
This paper enti