CLC number: TL375
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 12
Clicked: 7208
QADEER Riaz. Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process[J]. Journal of Zhejiang University Science B, 2005, 6(5): 353-356.
@article{title="Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process",
author="QADEER Riaz",
journal="Journal of Zhejiang University Science B",
volume="6",
number="5",
pages="353-356",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.B0353"
}
%0 Journal Article
%T Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process
%A QADEER Riaz
%J Journal of Zhejiang University SCIENCE B
%V 6
%N 5
%P 353-356
%@ 1673-1581
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.B0353
TY - JOUR
T1 - Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process
A1 - QADEER Riaz
J0 - Journal of Zhejiang University Science B
VL - 6
IS - 5
SP - 353
EP - 356
%@ 1673-1581
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.B0353
Abstract: Influence of temperature on ruthenium adsorption on activated charcoal from 3 mol/L HNO3 solutions was investigated in the temperature range of 288 K to 308 K. It was observed that the rise in temperature increases the adsorption of ruthenium ions on activated charcoal and follows the kinetics of first order rate law with rate constant values 0.0564–0.0640 min−1 in the temperature range of 288 K to 308 K respectively. The activation energy for the adsorption process was found to be 1.3806 kJ/mol. Various thermodynamics quantities namely ∆H, ∆S and ∆G were computed from the equilibrium constant KC values. The results indicated a positive heat of adsorption, a positive ∆S and a negative ∆G.
[1] Afzal, M., Hasany, S.M., Ahmad, H., Mahmood, F., 1993. Adsorption studies of cerium on lead dioxide from aqueous solutions. J. Radioanal. Nucl., 170:309-319.
[2] Atun, G., Kilislioglu, A., 2003. Adsorption behavior of cesium on montmorillonite-type clay in the presence of potassium ions. J. Radioanal. Nucl. Chem., 258:605-611.
[3] Bangash, M.A., Hanif, J., 1992. Sorption behavior of cobalt on illitic soil. Waste Management, 12:29-39.
[4] Benes, P., Majer, V., 1980. Trace Chemistry of Aqueous Solutions. Elsevier Scientific Publishing Co., p.207-213.
[5] Che, C.M., Wong, K.Y., Anson, F.C., 1987. Effects of electrode surface pretreatments on the electrochemistry of a macrocyclic dioxoruthenium (VI) complex. J. Electroanal. Chem. Interfacial Electrochem, 226:211-226.
[6] Chen, Y., Wu, J., Wang, N., 1993. Study on the sorption mechanism of 4-amino-triazole resin for Ru(IV). Guijinshu, 14:1-6.
[7] Esumi, K., Ichikawa, M., Yoshimura, T., 2004. Adsorption characteristics of poly(amodoamine) and poly(propelene imine) dentrimers on gold. Colloid & Surfaces A: Physiochem. Eng. Aspects, 232:249-252.
[8] Jiang, R., Anson, F.C., 1992. Association of electroactive counterions with polyelectrolytes. 4. Coordinative binding of ruthenium EDTA to poly(4-vinylpyridine). J. Phys. Chem., 96:452-458.
[9] Kavan, L., O’Regan, B., Kay, A., Graetzel, M., 1993. Preparation of titania (anatase) films on electrodes by anodic oxidative hydrolysis of titanium trichloride. J. Electroanal. Chem., 346:291-307.
[10] Ko, I., Kim, J.Y., Kim, K.W., 2004. Arsenic speciation and sorption kinetics in As-hematite-humic acid system. Colloid & Surfaces A: Physiochem. Eng. Aspects, 234:43-50.
[11] Lagergren, S., 1898. Bil. K. Sven. Vatenskapasad. Handl, p.24.
[12] Lazarin, A.M., Sernaglia, R.L., 1999. Adsorption of H[Ru(III)Cl2(H2EDTA)] complex on modified silica gel surface with [3-(2-aminoethyl)aminopropyl] trimethoxysilane in ethanol solution. Quim. Nova., 22:342-344.
[13] Legin, V.K., Kuznestsov, Y.V., 1974. State of ruthenium in natural waters. Chem. Abstract., 82:144703X.
[14] Lin, R., Onikubo, T., Nagai, K., Kaneko, M., 1993. Investigation of tris(2,2’-bipyridine) ruthenium/nafion film coated on electrodes studied using in situ cyclic voltammetry and photoluminescence. J. Electroanal. Chem., 348:181-188.
[15] Qadeer, R., Hanif, J., 1994. Kinetics of zirconium ions adsorption on activated charcoal from aqueous solutions. Carbon, 32:1433-1439.
[16] Qadeer, R., Hanif, J., Saleem, M., Afzal, M., 1993. Surface characterization and thermodynamics of Sr2+, Sm3+, Gd3+, Th4+ and UO22+ on activated charcoal from aqueous solution. Colloid. Polym. Sci., 271:83-90.
[17] Qadeer, R., Hanif, J., Hanif, I., 1995. Uptake of thorium ions from aqueous solutions by molecular sieves (13X Type) powder. J. Radioanal. Nucl. Chem., 190:103-112.
[18] Qian, D., Yang, L., 1986. Effects of surface adsorption of ruthenium (3+) and other cations on photoelectrochemical properties of n-indium phosphide. Wuli Huaxue Xuebao, 2:444-451.
[19] Vrublevs’ka, T.Ya., Vrons’ka, L.V., Korkuna, O.Ya., Matviychouk, N.M., 1999. Adsorption concentration of platinum metal by clinoptilolite. Adsorpt. Sci. Technol., 17:29-35.
Open peer comments: Debate/Discuss/Question/Opinion
<1>