Full Text:   <3633>

CLC number: TP37

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 3

Clicked: 4812

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.9 P.1516-1521

http://doi.org/10.1631/jzus.2006.A1516


Texture classification based on EMD and FFT


Author(s):  XIONG Chang-zhen, XU Jun-yi, ZOU Jian-cheng, QI Dong-xu

Affiliation(s):  School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510275, China; more

Corresponding email(s):   xczkiong@yahoo.com

Key Words:  Texture classification, Empirical mode decomposition (EMD), Fourier transform, Auto-registration, Rotation-invariant


XIONG Chang-zhen, XU Jun-yi, ZOU Jian-cheng, QI Dong-xu. Texture classification based on EMD and FFT[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1516-1521.

@article{title="Texture classification based on EMD and FFT",
author="XIONG Chang-zhen, XU Jun-yi, ZOU Jian-cheng, QI Dong-xu",
journal="Journal of Zhejiang University Science A",
volume="7",
number="9",
pages="1516-1521",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1516"
}

%0 Journal Article
%T Texture classification based on EMD and FFT
%A XIONG Chang-zhen
%A XU Jun-yi
%A ZOU Jian-cheng
%A QI Dong-xu
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 9
%P 1516-1521
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1516

TY - JOUR
T1 - Texture classification based on EMD and FFT
A1 - XIONG Chang-zhen
A1 - XU Jun-yi
A1 - ZOU Jian-cheng
A1 - QI Dong-xu
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 9
SP - 1516
EP - 1521
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1516


Abstract: 
empirical mode decomposition (EMD) is an adaptive and approximately orthogonal filtering process that reflects human’s visual mechanism of differentiating textures. In this paper, we present a modified 2D EMD algorithm using the FastRBF and an appropriate number of iterations in the shifting process (SP), then apply it to texture classification. rotation-invariant texture feature vectors are extracted using auto-registration and circular regions of magnitude spectra of 2D fast fourier transform (FFT). In the experiments, we employ a Bayesion classifier to classify a set of 15 distinct natural textures selected from the Brodatz album. The experimental results, based on different testing datasets for images with different orientations, show the effectiveness of the proposed classification scheme.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Bodnarova, A., Bennamoun, M., Latham, S., 2002. Optimal Gabor filters for textile flaw detection. Pattern Recognition, 35(12):2973-2991.

[2] Burt, P.J., Adelson, E.H., 1983. The Laplacian pyramid as a compact image code. IEEE Trans. Communications, 31(4):532-540.

[3] Campisi, P., Neri, A., Panci, G., Scarano, S., 2004. Robust rotation-invariant texture classification using a model based approach. IEEE Trans. on Image Processing, 13(6):782-791.

[4] Carr, J.C., Beatson, R.K., McCallum, B.C., Fright, W.R., McLennan, T.J., Mitchell, T.J., 2001. Reconstruction and Representation of 3D Objects with Radial Basis Functions. ACM SIGGRAPH’01, Los Angeles, CA, p.67-76.

[5] Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R., 2003. Smooth Surface Reconstruction from Noisy Range Data. ACM GRAPHITE’03, Melbourne, Australia, p.119-126.

[6] Charalampidis, D., Kasparis, T., 2002. Wavelet-based rotational invariant roughness features for texture classification and classification. IEEE Trans. Image Processing, 11(8):825-837.

[7] Chellappa, R., Kashyap, R., Manjunath, B.S., 1993. Model-based Texture Classification and Classification. Handbook of Pattern Recognition and Computer Vision. World Scientific, Singapore, p.277-310.

[8] Clausi, D.A., 2002. K-means iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture classification. Pattern Recognition. 35(9):1959-1972.

[9] Damerval, C., Meignen, S., Perrier, V., 2005. A fast algorithm for bidimensional EMD. IEEE Signal Processing Letters, 12(10):701-704.

[10] Flandrin, P., Rilling, G., Gonçalvés, P., 2004. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2):112-114.

[11] Haley, G.M., Manjunath, B.M., 1999. Rotation invariant texture classification using a complete space-frequency model. IEEE Trans. Image Processing, 8(2):255-269.

[12] Haralick, R.M., Shanmugan, K., Dinstein, I., 1973. Texture features for image classification. IEEE Trans. Systems, Man, and Cybernetics, 3(6):610-621.

[13] Hsu, T.I., Wilson, R., 1998. A two-component model of texture for analysis and synthesis. IEEE Trans. Image Processing, 7(10):1466-1476.

[14] Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London A, 454:903-995.

[15] Kasparis, T., Charalampidis, D., Georgiopoulos, M., Rolland, J., 2001. Classification of textured images based on fractals and image filtering. Pattern Recognition, 34(10):1963-1973.

[16] Kim, S.D., Udpa, S., 2000. Texture classification using rotated wavelet filter. IEEE Trans. on Systems Man and Cybernetics-Part A Systems and Humans, 30(6):847-852.

[17] Kumar, A., Pang, G. 2002. Defect detection in textured materials using optimized filters. IEEE Trans. Systems, Man, and Cybernetics. 32(5):553-570.

[18] Linderhed, A., 2004. Image Compression Based on Empirical Mode Decomposition. Proceedings of SSBA Symposium on Image Analysis, SSBA’04, p.110-113.

[19] Liu, Z.X., Peng, S.L., 2005. Directional EMD and its application to texture classification. Science in China (Series E), 35(2):113-123.

[20] Liu, Z.X., Wang, H.J., Peng, S.L., 2004. Texture Classification Through Directional Empirical Mode Decomposition. Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04), p.803-806.

[21] Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7):674-693.

[22] Nunes, J.C., Bouaoune, O., Delechelle, Y., Delechelle, E., Bunel, P., 2005. Texture analysis based on the local analysis of bidimensional empirical mode decomposition. Machine Vision and Applications, 16(3):177-188.

[23] Perona, P., Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(7):629-639.

[24] Porter, R., Canagarajah, N., 1997. Robust rotation-invariant texture classification: Wavelet, Gabor filter and GMRF based schemes. Proc. Inst. Elect. Eng., 144(3):180-188.

[25] Theodoridis, S., Koutroumbas, K., 1999. Pattern Recognition. Academic, New York.

[26] Tomita, F., Tsuji, S., 1990. Computer Analysis of Visual Textures. Kluwer Academic, Boston.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE