CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 4650
Xue An-Ke, Guo Yun-Fei. A new approach for target motion analysis with signal time delay[J]. Journal of Zhejiang University Science A, 2006, 7(101): 213-218.
@article{title="A new approach for target motion analysis with signal time delay",
author="Xue An-Ke, Guo Yun-Fei",
journal="Journal of Zhejiang University Science A",
volume="7",
number="101",
pages="213-218",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.AS0213"
}
%0 Journal Article
%T A new approach for target motion analysis with signal time delay
%A Xue An-Ke
%A Guo Yun-Fei
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 101
%P 213-218
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.AS0213
TY - JOUR
T1 - A new approach for target motion analysis with signal time delay
A1 - Xue An-Ke
A1 - Guo Yun-Fei
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 101
SP - 213
EP - 218
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.AS0213
Abstract: A new approach is proposed in this paper for the problem of the target motion analysis (TMA) with signal propagation time delay. This problem is an unobservable tracking problem in which the acoustic signal transmits with time delay. We present an intelligent range parameterized unscented Kalman filter (IRPUKF) algorithm to estimate the state of the nonlinear unobservable tracking system and propose a recursive model parameter online adjustment method to deal with the time delay in signal propagation. In a simulation of tracking target using a maneuvering acoustic sensor with signal time delay case study, the effectiveness and efficiency of the proposed algorithm is testified to perform better, compared with the range parameterized extended Kalman filter (RPEKF) algorithm.
[1] Dommermuth, F., Schiller, J., 1984. Estimating the trajectory of an accelerationless aircraft by means of a stationary acoustic sensor. Journal of Acoustical Society of America, 76(4):1114-1122.
[2] Foy, W.H., 1976. Position-location solutions by Taylor-series estimation. IEEE Trans. AES, 12:187-194.
[3] Gai, M.J., Yi, X., He, Y., Shi, B., 2005. An Approach to Tracking a 3D-target with 2D-radar. 2005 IEEE International Radar Conference, Arlington, Virginia, USA, p.763-768.
[4] Julier, S., Uhlmann, J., Durrant-White, H.F., 2000. A new method for nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. AC, 45(3):477-482.
[5] Kronhamn, T.R., 1998. Bearings-only target motion analysis based on a multihypothesis Kalman filter and adaptive ownship motion control. Radar, Sonar Navigation, IEE Proceedings, 145(4):247-252.
[6] Li, X.R., Jilkov, V.P., Ru, J.F., 2005. Multiple-model estimation with variable structure—part VI: expected-mode augmentation. IEEE Trans. AES, 41(3):853-867.
[7] Lo, K.W., Ferguson, B.G., 2000. Broadband passive acoustic technique for target motion parameter estimation. IEEE Trans. AES, 36(1):163-175.
[8] Passerieux, J.M., van Cappel, D., 1998. Optimal observer maneuver for bearings-only tracking. IEEE Trans. AES, 34(3):777-788.
[9] Peach, N., 1995. Bearings-only tracking using a set of range-parameterised extended Kalman filters. Control Theory and Applications, IEE Proceedings, 142(1):73-80.
[10] Ristic, B., Arulampalam, S., Gordon, N., 2004. Beyond the Kalman Filter. Artech House, Boston, London, p.103-108.
Open peer comments: Debate/Discuss/Question/Opinion
<1>