CLC number: P71; O657.15
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 6490
Ying YE, Xia HUANG, Yi-wen PAN, Chen-hua HAN, Wei ZHAO. In-situ measurement of the dissolved S2− in seafloor diffuse flow system: sensor preparation and calibration[J]. Journal of Zhejiang University Science A, 2008, 9(3): 423-428.
@article{title="In-situ measurement of the dissolved S2− in seafloor diffuse flow system: sensor preparation and calibration",
author="Ying YE, Xia HUANG, Yi-wen PAN, Chen-hua HAN, Wei ZHAO",
journal="Journal of Zhejiang University Science A",
volume="9",
number="3",
pages="423-428",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071360"
}
%0 Journal Article
%T In-situ measurement of the dissolved S2− in seafloor diffuse flow system: sensor preparation and calibration
%A Ying YE
%A Xia HUANG
%A Yi-wen PAN
%A Chen-hua HAN
%A Wei ZHAO
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 3
%P 423-428
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071360
TY - JOUR
T1 - In-situ measurement of the dissolved S2− in seafloor diffuse flow system: sensor preparation and calibration
A1 - Ying YE
A1 - Xia HUANG
A1 - Yi-wen PAN
A1 - Chen-hua HAN
A1 - Wei ZHAO
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 3
SP - 423
EP - 428
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071360
Abstract: The preparation approach and calibration result of an improved type of ion selective electrode (ISE), which is used to measure the total dissolved S2−, are introduced in this paper. The improved Ag/Ag2S electrode uses silver wire as the substrate, which is surrounded by electric polymer containing superfine silver powder. After the stabilization of the epoxy-resin, Ag2S layer was formed by chemical reaction with 0.2 mol/L (NH4)2S solution for 5 min. With Ag/AgCl as reference electrode, the Ag/Ag2S electrode can be used to measure dissolved S2−. The correlation between the measured potentials and the logarithm of dissolved S2− is found to be linear, within range of the concentration of dissolved S2− from 10−2~10−7 mol/L. The slope of the regression line between measured potential and logarithm of dissolved S2− is about −27.7, which agrees well with the theoretical Nernst value −29.6. Furthermore, the performance of the improved Ag/Ag2S electrode, such as the response time, sensitivity and stability, greatly outweighs the conventional Ag/Ag2S electrode.
[1] Beukema, V.P.T., 1991. In-situ characterization of sediments measurement of oxygen and sulfide profiles with novel combined needle electrode. Limnol. Oceanogr., 36(7):1476-1480.
[2] de Beer, D., Wenzhofer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., Bottcher, M.E., Musat, N., Dubilier, N., 2005. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Romo Basin, Wadden Sea. Limnol. Oceanogr., 50(1):113-127.
[3] Ding, K., Seyfried, W.E.Jr., 1995. In-situ measurement of dissolved H2 in aqueous fluid at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 59(22):4769-4773.
[4] Ding, K., Seyfried, W.E.Jr., 1996. Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400 °C and 40 megapascals. Science, 272(5268):1634-1636.
[5] Ding, K., Seyfried, W.E.Jr., Tivey, M.K., Bradley, A.M., 2001. In-situ measurement of dissolved H2 and H2S in high temperature hydrothermal vent fluids at the Main Endeavour field, Juan de Fuca Ridge. Earth and Planetary Science Letters, 186(3-4):417-425.
[6] Embley, R.W., Lupton, J.E., Massoth, G., Urabe,T., Tunnicliffe, V., Butterfield, D.A., Shilbata, T., Okanao, O., Kinoshita, M., Fujioka, K., 1998. Geological, chemical, and biological evidence for recent volcanism at 17.5(S: East Pacific Rise. Earth and Planetary Science Letters, 163(1-4):131-147.
[7] Eroglu, A.E., Volkan, M., Ataman, O.Y., 2000. Fiber optic sensors using novel substrates for hydrogen sulfide determination by solid surface fluorescence. Talanta, 53(1):89-101.
[8] Foustoukos, D.I., Seyfried, W.E.Jr., 2005. Redox and pH constraints in the subseafloor root zone of the TAG hydrothermal system, 268 N Mid-Atlantic Ridge. Earth and Planetary Science Letters, 235(3-4):497-510.
[9] Huber, H., Stetter, K.O., 1998. Hyperthermophiles and their possible potential in biotechnology. Journal of Biotechnology, 64(1):39-52.
[10] Ishibashi, J., Sato, M., Sano, Y., Wakita, H., Gamo, T., Shanks, W.C., 2002. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough. Applied Geochemistry, 17(11):1457-1466.
[11] le Bris, N., Sarradin, P.M., Caprais, J.C., 2003. Contrasted sulphide chemistries in the environment of 13(N EPR vent fauna. Deep Sea Research Part I: Oceanographic Research Papers, 50(6):737-747.
[12] Müller, B., Stierli, R., 1999. In situ determination of sulfide profiles in sediment porewaters with a miniaturized Ag/Ag2S electrode. Analytica Chimica Acta, 401(1-2):257-264.
[13] Revsbech, N.P., Blackburn, T.H., Cohen, Y., 1983. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr., 28:1062-1074.
[14] Rubin, K., 1997. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observation and predictions. Geochimica et Cosmochimica Acta, 61(17):3525-3542.
[15] Seewald, J., Cruse, A., Saccocia, P., 2003. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters, 216(4):575-590.
[16] Seyfried, W.E.Jr., Foustoukos D.I., Fu, Q., 2007. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 (C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 71(15):3872-3886.
[17] Urcuyo, I.A., Massoth, G.J., Julian, D., Fisher, C.R., 2003. Habitat, growth and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 50(6):763-780.
[18] Wu, G.L., 1994. Cathodic stripping analysis of sulfide in marine sediments. Marine Environmental Science, 13(1):64-68.
[19] Zhao, W.D., Song, J.M., 2000. Progress in the development of marine chemical sensors. Oceanologia et Limnologia Sinica, 31(4):453-459.
Open peer comments: Debate/Discuss/Question/Opinion
<1>