CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6397
Deng-feng ZHANG, Hong-ye SU, Jian CHU, Zhi-quan WANG. Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints[J]. Journal of Zhejiang University Science A, 2008, 9(8): 1024-1033.
@article{title="Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints",
author="Deng-feng ZHANG, Hong-ye SU, Jian CHU, Zhi-quan WANG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="8",
pages="1024-1033",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720031"
}
%0 Journal Article
%T Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints
%A Deng-feng ZHANG
%A Hong-ye SU
%A Jian CHU
%A Zhi-quan WANG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 8
%P 1024-1033
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720031
TY - JOUR
T1 - Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints
A1 - Deng-feng ZHANG
A1 - Hong-ye SU
A1 - Jian CHU
A1 - Zhi-quan WANG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 8
SP - 1024
EP - 1033
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720031
Abstract: The suboptimal reliable guaranteed cost control (RGCC) with multi-criterion constraints is investigated for a class of uncertain continuous-time systems with sensor faults. A fault model in sensors, which considers outage or partial degradation of sensors, is adopted. The influence of the disturbance on the quadratic stability of the closed-loop systems is analyzed. The reliable state-feedback controller is developed by a linear matrix inequalities (LMIs) approach, to minimize the upper bound of a quadratic cost function under the conditions that all the closed-loop poles be placed in a specified disk, and that the prescribed level of H∞ disturbance attenuation and the upper bound constraints of control inputs’ magnitudes be guaranteed. Thus, with the above multi-criterion constraints, the resulting closed-loop system can provide satisfactory stability, transient property, a disturbance rejection level and minimized quadratic cost performance despite possible sensor faults.
[1] Boyd, S.P., Ghaowi, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA.
[2] Cao, F., Lu, R., Su, H., Chu, J., 2004. Robust H( output feedback control for a class of uncertain Lur’e systems with time-delays. J. Zhejiang Univ. Sci., 5(9):1114-1123.
[3] Chen, W.H., Guan, Z.H., Lu, X., 2004. Delay-dependent guaranteed cost control for uncertain discrete-time systems with both state and input delays. J. Franklin Inst., 341(5):419-430.
[4] Chilali, M., Gahinet, P., Apkarian, P., 1999. Robust pole placement in LMI regions. IEEE Trans. on AC, 44(12):2257-2270.
[5] Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A., 1989. State-space solutions to standard H2 and H( control problems. IEEE Trans. on AC, 34(8):831-847.
[6] Elia, N., Dahleh, M.A., 1997. Controller design with multiple objectives. IEEE Trans. on AC, 42(5):596-613.
[7] Garcia, G., 1997. Quadratic guaranteed cost and disc pole location control for discrete-time uncertain systems. IEE Proc.-Control Theory Appl., 144(6):545-548.
[8] Hsieh, C.S., 2002. Performance gain margins of the two-stage LQ reliable control. Automatica, 38(11):1985-1990.
[9] Liu, H.L., Duan, G.R., Zhang, Y., 2006. Robust Reliable Guaranteed Cost Control of Linear Descriptor Time-delay Systems with Actuator Failures. Proc. 5th Int. Conf. on Machine Learning and Cybernetics, Dalian, China, p.422-427.
[10] Pujol, G., Rodellar, J., Rossell, J.M., Pozo, F., 2007. Decentralised reliable guaranteed cost control of uncertain systems: an LMI design. IET Control Theory Appl., 1(3):779-785.
[11] Veillette, R.J., 1995. Rliable linear quadratic state-feedback control. Automatica, 31(1):137-143.
[12] Wang, Z., Ho, D.W.C., 2005. Output feedback robust H( control with D-stability and variance constraints: parametrization approach. J. Dyn. Control Syst., 11(2):263-280.
[13] Wu, H.N., 2007. Reliable robust H( fuzzy control for uncertain nonlinear systems with Markovian jumping actuator faults. J. Dyn. Syst. Meas. Control, 129(3):252-261.
[14] Wu, H.N., Zhang, H.Y., 2005. Reliable mixed l2/H( fuzzy static output feedback control for nonlinear systems with sensor faults. Automatica, 41(11):1925-1932.
[15] Yang, Y., Yang, G.H., Soh, Y.C., 2000. Reliable control of discrete-time systems with actuator failure. IEE Proc. Control Theory Appl., 147(4):428-432.
[16] Yee, J.S., Yang, G.H., Wang, J.L., 2000. Resilient guaranteed cost control to tolerate actuator faults for discrete-time uncertain linear systems. IEE Proc.-Control Theory Appl., 147(3):277-284.
[17] Yu, L., Xu, J.M., Han, Q.L., 2004. Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints. 5th World Congress on Intelligent Control and Automation, Hangzhou, China, p.553-557.
[18] Zhang, D., Wang, Z., Hu, S., 2007. Robust satisfactory fault-tolerant control of uncertain discrete-time systems: an LMI approach. Int. J. Syst. Sci., 38(2):151-165.
[19] Zhang, G., Wang, Z., Han, X., 2006. Fuzzy Fault-tolerant Control System Design with Multi-indices Constraints. Proc. 6th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes, Beijing, China, p.1507-1512.
Open peer comments: Debate/Discuss/Question/Opinion
<1>