CLC number: TN919.8; TP37
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2008-11-10
Cited: 0
Clicked: 5992
Wan-yi LI, Lu YU. Highly parallel implementation of sub-pixel interpolation for AVS HDTV decoder[J]. Journal of Zhejiang University Science A, 2008, 9(12): 1638-1643.
@article{title="Highly parallel implementation of sub-pixel interpolation for AVS HDTV decoder",
author="Wan-yi LI, Lu YU",
journal="Journal of Zhejiang University Science A",
volume="9",
number="12",
pages="1638-1643",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820112"
}
%0 Journal Article
%T Highly parallel implementation of sub-pixel interpolation for AVS HDTV decoder
%A Wan-yi LI
%A Lu YU
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 12
%P 1638-1643
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820112
TY - JOUR
T1 - Highly parallel implementation of sub-pixel interpolation for AVS HDTV decoder
A1 - Wan-yi LI
A1 - Lu YU
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 12
SP - 1638
EP - 1643
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820112
Abstract: In this paper, we propose an effective VLSI architecture of sub-pixel interpolation for motion compensation in the AVS HDTV decoder. To utilize the similar arithmetical operations of 15 luma sub-pixel positions, three types of interpolation filters are proposed. A simplified multiplier is presented due to the limited range of input in the chroma interpolation process. To improve the processing throughput, a parallel and pipelined computing architecture is adopted. The simulation results show that the proposed hardware implementation can satisfy the real-time constraint for the AVS HDTV (1 920×1 088) 30 fps decoder by operating at 108 MHz with 38.18k logic gates. Meanwhile, it costs only 216 cycles to accomplish one macroblock, which means the B frame sub-pixel interpolation can be realized by using only one set of the proposed architecture under real-time constraints.
[1] AVS (Audio Video Coding Standard Workgroup of China), 2003. Video Coding Standard FCD1.0.
[2] Chen, T.C., Huang, Y.W., Chen, L.G., 2004. Fully Utilized and Reusable Architecture for Fractional Motion Estimation of H.264/AVC. Proc. IEEE ICASSP, 5:9-12.
[3] Deng, L., Gao, W., Hu, M.Z., Ji, Z.Z., 2004. An Efficient VLSI Implementation for MC Interpolation of AVS Standard. Advances in Multimedia Information Processing, p.200-206.
[4] Horowitz, M., Joch, A., Kossentini, F., Hallapuro, A., 2003. H.264/AVC baseline profile decoder complexity analysis. IEEE Trans. on Circuits Syst. Video Technol., 13(7):704-716.
[5] Li, Y., Qu, Y.M., He, Y., 2007. Memory Cache Based Motion Compensation Architecture for HDTV H.264/AVC Decoder. IEEE Int. Symp. on Circuits and Systems, p.2906-2909.
[6] Ling, N., Wang, N.T., 2003. A real-time video decoder for digital HDTV. J. VLSI Signal Processing, 33(3):295-306.
[7] Mizosoe, H., Yoshida, D., Nakamura, T., 2007. A single chip H.264/AVC HDTV encoder/decoder/transcoder system LSI. IEEE Trans. on Consum. Electron., 53(2):630-635.
[8] Song, Y., Liu, Z.Y., Goto, S., Ikenaga, T., 2005. A VLSI Architecture for Motion Compensation Interpolation in H.264/AVC. 6th Int. Conf. on ASIC, 1:279-282.
[9] Tsai, C.Y., Chen, T.C., Chen, T.W., Chen, L.G., 2005. Bandwidth Optimized Motion Compensation Hardware Design for H.264/AVC HDTV Decoder. 48th Midwest Symp. on Circuits and Systems, 2:1199-1202.
[10] Wang, R.G., Huang, C., Li, J.T., Shen, Y.F., 2004. Sub-pixel Motion Compensation Interpolation Filter in AVS. IEEE Int. Conf. on Multimedia and Expo, 1:93-96.
[11] Wang, S.Z., Lin, T.A., Liu, T.M., Lee, C.Y., 2005. A New Motion Compensation Design for H.264/AVC Decoder. Proc. IEEE Int. Symp. on Circuits and Systems, 5:4558-4561.
[12] Zheng, J.H., Deng, L., Zhang, P., Xie, D., 2006. An efficient VLSI architecture for motion compensation of AVS HDTV decoder. J. Comput. Sci. Technol., 21(3):370-377.
Open peer comments: Debate/Discuss/Question/Opinion
<1>