Full Text:   <3831>

CLC number: TU3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-02-22

Cited: 5

Clicked: 7226

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.3 P.206-218

http://doi.org/10.1631/jzus.A1200114


Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode*


Author(s):  Su-deok Shon1, Seung-jae Lee1, Kang-guk Lee2

Affiliation(s):  1. School of Architectural Engineering, Korea University of Technology and Education, 1800 Chungjeolro, Cheonan Chungnam, Republic of Korea; more

Corresponding email(s):   leeseung@koreatech.ac.kr

Key Words:  Space truss, Geometric nonlinearity, Initial imperfection, Snap-through, Bifurcation, Global buckling


Su-deok Shon, Seung-jae Lee, Kang-guk Lee. Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode[J]. Journal of Zhejiang University Science A, 2013, 14(3): 206-218.

@article{title="Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode",
author="Su-deok Shon, Seung-jae Lee, Kang-guk Lee",
journal="Journal of Zhejiang University Science A",
volume="14",
number="3",
pages="206-218",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200114"
}

%0 Journal Article
%T Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode
%A Su-deok Shon
%A Seung-jae Lee
%A Kang-guk Lee
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 3
%P 206-218
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200114

TY - JOUR
T1 - Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode
A1 - Su-deok Shon
A1 - Seung-jae Lee
A1 - Kang-guk Lee
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 3
SP - 206
EP - 218
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200114


Abstract: 
This study investigated characteristics of bifurcation and critical buckling load by shape imperfection of space truss, which were sensitive to initial conditions. The critical point and buckling load were computed by the analysis of the eigenvalues and determinants of the tangential stiffness matrix. The two-free-nodes example and star dome were selected for the case study in order to examine the nodal buckling and global buckling by the sensitivity to the eigen buckling mode and the analyses of the influence, and characteristics of the parameters as defined by the load ratio of the center node and surrounding node, as well as rise-span ratio were performed. The sensitivity to the imperfection of the initial shape of the two-free-nodes example, which occurs due to snapping at the critical point, resulted in bifurcation before the limit point due to the buckling mode, and the buckling load was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns of the numerical model are established by investigating the displaced position of the free nodes, and the asymmetric eigenmode greatly influenced the behavior of the imperfection shape whether it was at limit point or bifurcation. Furthermore, the sensitive mode of the two-free-nodes example was similar to the in-extensional basis mechanism of a simplified model. The star dome, which was used to examine the influence among several nodes, indicated that the influence of nodal buckling was greater than that of global buckling as the rise-span ratio was higher. Besides, global buckling is occurred with reaching bifurcation point as the value of load ratio was higher, and the buckling load level was about 50%–70% of load level at limit point.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abedi, K., Parke, G.A.R., 1991. Progressive collapse of single-layer braced domes. International Journal of Space Structures, 11(3):291-306. 

[2] Bulenda, T., Knippers, J., 2001. Stability of grid shells. Computers and Structures, 79(12):1161-1174. 


[3] Chan, S.L., Zhou, Z.H., 1995. Second-order elastic analysis of frames using single imperfect element per member. Journal of Structural Engineering, 121(6):939-945. 


[4] Choong, K.K., Hangai, Y., 1993. Review on methods of bifurcation analysis for geometrically nonlinear structures. Bulletin of the International Association for Shell and Spatial Structures, 34(112):133-149. 

[5] Choong, K.K., Kim, J.Y., 2001. A numerical strategy for computing the stability boundaries for multi-loading systems by using generalized inverse and continuation method. Engineering Structures, 23(6):715-724. 


[6] Deng, H., Kwan, A.S.K., 2005. Unified classification of stability of pin-jointed bar assemblies. International Journal of Solids and Structures, 42(15):4393-4413. 


[7] El-Sheikh, A., 1998. Design of space truss structures. Structural Engineering and Mechanics, 6(2):185-200. 

[8] Fan, F., Yan, J., Cao, Z., 2010. Calculation Methods of Stability of Single-Layer Reticulated Domes Considering the Effect of Initial Bending of Members. , Proceedings of the IASS Symposium, Shanghai, 339-347. :339-347. 

[9] Fan, F., Ma, H., Cao, Z., Shen, S., 2011. A new classification system for the joints used in lattice shells. Thin-Walled Structures, 49(12):1544-1553. 


[10] Gao, B., Lu, Q., Dong, S., 2003. Geometrical nonlinear stability analyses of cable-truss domes. Journal of Zhejiang University-SCIENCE, 4(3):317-323. 


[11] Hill, C.D., Blandford, G.E., Wang, S.T., 1989. Post-bucking analysis of steel space trusses. Journal of Structural Engineering, 115(4):900-919. 


[12] Huseyin, K., 1973. The multi-parameter perturbation technique for the analysis of nonlinear system. International Journal of Non-Linear Mechanics, 8(5):431-443. 


[13] Hwang, K.J., Knippers, J., 2010. Stability of Single Layered Grid Shells with Various Connectors. , Proceedings of the ICSA Guimaraes, Portugal, 581-588. :581-588. 

[14] Kato, S., Mutoh, I., Shomura, M., 1994. Effect on joint rigidity on buckling strength of single layer lattice dome. Bulletin of the International Association for Shell and Spatial Structures, 35(115):101-109. 

[15] Kato, S., Yamashita, T., Nakazawa, S., Kim, Y., Fujibayashi, A., 2007. Analysis based evaluation for buckling loads of two-way elliptic paraboloidal single layer lattice domes. Journal of Constructional Steel Research, 63(9):1219-1227. 


[16] Kato, S., Nakazawa, S., Nobe, K., 2010. Semi-Probabilistic Evaluation of Buckling Strength of Two-Way Single Layer Lattice Dome. , Proceedings of the IASS Symposium, Shanghai, 384-395. :384-395. 

[17] Kim, S.D., Kang, M.M., Kwun, T.J., Hangai, Y., 1997. Dynamic instability of shell-like shallow trusses considering damping. Computers and Structures, 64(1-4):481-489. 


[18] Lopez, A., Puente, I., Serna, M.A., 2007. Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints. Computers and Structures, 85(7-8):360-374. 


[19] Ma, H., Fan, F., Shen, S., 2009. Numerical Parametric Investigation of Single-Layer Latticed Domes with Semi-Rigid Joints. , Proceedings of the IASS Symposium, Valencia, 99-110. :99-110. 

[20] Mang, H.A., Schranz, C., Mackenzie-Helnwein, P., 2006. Conversion from imperfection-sensitive into imperfection-insensitive elastic structures I: Theory. Computer Methods in Applied Mechanics and Engineering, 195(13-16):1422-1457. 


[21] Pellegrino, S., 1993. Structural computations with the singular value decomposition of the equilibrium matrix. International Journal of Solids and Structures, 30(21):3025-3035. 


[22] Schranz, C., Krenn, B., Mang, H.A., 2006. Conversion from imperfection-sensitive into imperfection-insensitive elastic structures II: Numerical investigation. Computer Methods in Applied Mechanics and Engineering, 195(13-16):1458-1479. 


[23] Shon, S.D., Kim, S.D., Kang, M.M., 2002. Nonlinear Instability Analysis of Framed Space Structures with Semi-rigid Joints. , Proceedings of the IASS Symposium, Warsaw, 422-427. :422-427. 

[24] Steinboeck, A., Jia, X., Hoefinger, G., Mang, H.A., 2008. Conditions for symmetric, antisymmetric, and zero-stiffness bifurcation in view of imperfection sensitivity and insensitivity. Computer Methods in Applied Mechanics and Engineering, 197(45-48):3623-3626. 


[25] Thompson, J.M.T., Hunt, G.W., 1983. On the buckling and imperfection-sensitivity of arches with and without prestress. International Journal of Solids and Structures, 19(5):445-459. 


[26] Uros, M., Lazarevic, D., Gidak, P., 2011. Interaction of Member and Node Instability in the Single Layer Reticulated Shell. , Proceedings of the IABSE-IASS Symposium, London, 168:168

[27] Yamada, S., Matsumoto, Y., Sakamoto, A., 2011. Design Estimation Method of Buckling Load and the Associated Mode for Single Layer Lattice Dome Roof with Square Plan. , Proceedings of the IABSE-IASS Symposium, London, 72:72

[28] You, K.H., Kim, M.S., Cho, B.W., 2010. Instability Characteristic of Space Frames with Various Networks. , Proceedings of the IASS Symposium, Shanghai, 1505-1516. :1505-1516. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE