Full Text:   <7646>

Summary:  <2280>

CLC number: TU432

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-01-23

Cited: 7

Clicked: 9626

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.2 P.101-109

http://doi.org/10.1631/jzus.A1200121


Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method*


Author(s):  Ke Zhang1, Ping Cao1, Rui Bao2

Affiliation(s):  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China; more

Corresponding email(s):   zhangke_csu@163.com

Key Words:  Shear strength reduction, Strain-softening, Peak strength, Residual strength, Progressive failure analysis


Ke Zhang, Ping Cao, Rui Bao. Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method[J]. Journal of Zhejiang University Science A, 2013, 14(2): 101-109.

@article{title="Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method",
author="Ke Zhang, Ping Cao, Rui Bao",
journal="Journal of Zhejiang University Science A",
volume="14",
number="2",
pages="101-109",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200121"
}

%0 Journal Article
%T Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method
%A Ke Zhang
%A Ping Cao
%A Rui Bao
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 2
%P 101-109
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200121

TY - JOUR
T1 - Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method
A1 - Ke Zhang
A1 - Ping Cao
A1 - Rui Bao
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 2
SP - 101
EP - 109
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200121


Abstract: 
Based on the strength reduction method and strain-softening model, a method for progressive failure analysis of strain-softening slopes was presented in this paper. The mutation is more pronounced in strain-softening analysis, and the mutation of displacement at slope crest was taken as critical failure criterion. An engineering example was provided to demonstrate the validity of the present method. This method was applied to a cut slope in an industry site. The results are as follows: (1) The factor of safety and the critical slip surface obtained by the present method are between those by peak and residual strength. The analysis with peak strength would lead to non-conservative results, but that with residual strength tends to be overly conservative. (2) The thickness of the shear zone considering strain-softening behaviour is narrower than that with non-softening analysis. (3) The failure of slope is the process of the initiation, propagation and connection of potential failure surface. The strength parameters are mobilized to a non-uniform degree while progressive failure occurs in the slope. (4) The factor of safety increases with the increase of residual shear strain threshold and elastic modulus. The failure mode of slope changes from shallow slip to deep slip. Poisson’s ratio and dilation angle have little effect on the results.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Cheng, Y.M., Lau, C.K., 2008.  Slope Stability Analysis and Stabilization, New Methods and Insight. Taylor & Francis Group,London :18-19. 

[2] Cheng, Y.M., Lansivaara, T., Wei, W.B., 2007. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34(3):137-150. 


[3] Conte, E., Silvestri, F., Troncone, A., 2010. Stability analysis of slopes in soils with strain-softening behaviour. Computers and Geotechnics, 37(5):710-722. 


[4] Dawson, E.M., Roth, W.H., Drescher, A., 1999. Slope stability analysis by strength reduction. Gotechnique, 49(6):835-840. 


[5] Griffiths, D.V., Lane, P.A., 1999. Slope stability analysis by finite element. Gotechnique, 49(3):387-403. 


[6] Itasca Consulting Group, Inc., 2005.  FLAC: Fast Lagrangian Analysis of Continua in 3 Dimensions User Manual (Version 3.0). Minneapolis,USA :

[7] Khan, Y.A., Jiang, J.C., Yamagami, T., 2002. Progressive failure analysis of slopes using non-vertical slices. Journal of the Japan Landslide Society, 39(2):203-211. 


[8] Law, K.T., Lumb, P., 1978. A limit equilibrium analysis of progressive failure in the stability of slopes. Canadian Geotechnical Journal, 15(1):113-122. 


[9] Lin, H., Cao, P., Li, J., Liu, Y., 2008. The standards for critical failure state of slope. Journal of China Coal Society, (in Chinese),33(6):643-647. 

[10] Liu, C., 2009. Progressive failure mechanism in one-dimensional stability analysis of shallow slope failures. Landslides, 6(2):129-137. 


[11] Liu, K., Chen, J., Xie, X., Zhu, X., 2006. Large deformation finite element analysis on excavated slopes. Chinese Journal of Geotechnical Engineering, (in Chinese),28(Supp.):1406-1410. 

[12] Locat, A., Leroueil, S., Bernander, S., Demers, D., Jostad, H.P., Ouehb, L., 2011. Progressive failures in eastern Canadian and Scandinavian sensitive clays. Canadian Geotechnical Journal, 48(11):1696-1712. 


[13] Mesri, G., Shahien, M., 2003. Residual shear strength mobilized in first-time slope failures. Journal of Geotechnical and Geoenvironmental Engineering, 129(1):12-31. 


[14] Miao, T., Ma, C., Wu, S., 1999. Evolution model of progressive failure of landslides. Journal of Geotechnical and Geoenvironmental Engineering, 125(10):827-831. 


[15] Potts, D.M., Zdravkovic, L., 1999.  Finite Element Analysis in Geotechnical Engineering: Theory. Thomas Telford,London :158-160. 

[16] Potts, D.M., Kovacevic, N., Vaughan, P.R., 1997. Delayed collapse of cut slopes in stiff clay. Gotechnique, 47(5):953-982. 


[17] Skempton, A.W., 1964. Long-term stability of clay slopes. Gotechnique, 14(2):77-101. 


[18] Skempton, A.W., 1985. Residual strength of clay in landslide, folded strata and the laboratory test. Gotechnique, 35(1):1-18. 

[19] Tang, H.X., 2008. Analysis for Progressive Failure of the Senise Landslide Based on Cosserat Continuum Model. , Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xian, China, 945-950. :945-950. 


[20] Troncone, A., 2005. Numerical analysis of a landslide in soils with strain-softening behaviour. Gotechnique, 55(8):585-596. 


[21] Wang, G., 2000. The progressive failure of slope and the stability analysis. Chinese Journal of Rock Mechanics and Engineering, (in Chinese),19(1):29-33. 

[22] Wang, G., Kong, L., Guo, A., Wang, Z., 2005. Element model with shear band and its application to progressive failure analysis of slopes. Chinese Journal of Rock Mechanics and Engineering, (in Chinese),24(21):3852-3857. 

[23] Zhang, G., Zhang, J., 2007. Stability evaluation of strain-softening slope based on Swedish slice method. Rock and Soil Mechanics, (in Chinese),28(1):12-16. 

[24] Zhang, G., Wang, L., 2010. Stability analysis of strain-softening slope reinforced with stabilizing piles. Journal of Geotechnical and Geoenvironmental Engineering, 136(11):1578-1582. 


[25] Zienkiewicz, O.C., Humpheson, C., Lewis, R.W., 1975. Associated and nonassociated visco-plasticity and plasticity in soil mechanics. Gotechnique, 25(4):671-689. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE