References
[1] Abele, E., Korff, D., 2011. Avoidance of collision-caused spindle damages—challenges, methods and solutions for high dynamic machine tools.
CIRP Annals-Manufacturing Technology, 60(1):425-428.
[2] Balasubramaniam, M., Ho, S., Sarma, S., Adachi, Y., 2002. Generation of collision-free 5-axis tool paths using a haptic surface.
Computer-Aided Design, 34(4):267-279.
[3] Balasubramaniam, M., Sarma, S.E., Marciniak, K., 2003. Collision-free finishing toolpaths from visibility data.
Computer-Aided Design, 35(4):359-374.
[4] Beudaert, X., Pechard, P.Y., Tournier, C., 2011. 5-Axis tool path smoothing based on drive constraints.
International Journal of Machine Tools and Manufacture, 51(12):958-965.
[5] Bi, Y.B., Cheng, Q.L., Dong, H.Y., Ke, Y.L., 2009. Machining distortion prediction of aerospace monolithic components.
Journal of Zhejiang University-SCIENCE A, 10(5):661-668.
[6] Castagnetti, C., Duc, E., Ray, P., 2008. The domain of admissible orientation concept: a new method for five-axis tool path optimisation.
Computer-Aided Design, 40(9):938-950.
[7] Chen, H.P., Kuo, H.H., Tsay, D.M., 2009. Removing tool marks of blade surfaces by smoothing five-axis point milling cutter paths.
Journal of Materials Processing Technology, 209(17):5810-5817.
[8] Chen, K.H., 2011. Investigation of tool orientation for milling blade of impeller in five-axis machining.
The International Journal of Advanced Manufacturing Technology, 52(1-4):235-244.
[9] Chiou, J.C.J., 2005. Optimal tool orientation for five-axis tool-end machining by swept envelope approach.
Journal of Manufacturing Science and Engineering, 127(4):810-818.
[10] Chui, K.L., Chiu, W.K., Yu, K.M., 2008. Direct 5-axis tool-path generation from point cloud input using 3D biarc fitting.
Robotics and Computer-Integrated Manufacturing, 24(2):270-286.
[11] Davim, P., 2012. Machining of Complex Sculptured Surfaces. Flank Milling of Complex Surfaces. Springer,Germany :
[12] de Lacalle, L.N.L., Lamikiz, A., Sanchez, J.A., Salgado, M.A., 2007. Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling.
International Journal of Machine Tools and Manufacture, 47(2):388-400.
[13] de Lacalle, L.N.L., Rodriguez, A., Lamikiz, A., Celaya, A., Alberdi, R., 2011. Five-axis machining and burnishing of complex parts for surface roughness improvement.
Materials and Manufacturing Processes, 26(8):997-1003.
[14] Dombovari, Z., Iglesias, A., Zatarain, M., Insperger, T., 2011. Prediction of multiple dominant chatter frequencies in milling processes.
International Journal of Machine Tools and Manufacture, 51(6):457-464.
[15] Fan, J., Ball, A., 2008. Quadric method for cutter orientation in five-axis sculptured surface machining.
International Journal of Machine Tools and Manufacture, 48(7-8):788-801.
[16] Fard, M.J.B., Feng, H.Y., 2010. Effective determination of feed direction and tool orientation in five-axis flat-end milling.
Journal of Manufacturing Science and Engineering, 132(6):061011
[17] Fard, M.J.B., Feng, H.Y., 2011. New criteria for tool orientation determination in five-axis sculptured surface machining.
International Journal of Production Research, 49(20):5999-6015.
[18] Heinemann, R., Hinduja, S., 2012. A new strategy for tool condition monitoring of small diameter twist drills in deep-hole drilling.
International Journal of Machine Tools and Manufacture, 52(1):69-76.
[19] Jin, G.Q., Li, W.D., Tsai, C.F., Wang, L., 2011. Adaptive tool-path generation of rapid prototyping for complex product models.
Journal of Manufacturing Systems, 30(3):154-164.
[20] Kaneko, J., Horio, K., 2011. Tool posture planning method for continuous 5-axis control machining on machine tool coordinate system to optimize motion of translational axes.
International Journal of Automation Technology, 5(5):729-737.
[21] Korakianitis, T., Hamakhan, I.A., Rezaienia, M.A., Wheeler, A.P.S., Avital, E.J., Williams, J.J.R., 2012. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (circle) method.
Applied Energy, 89(1):215-227.
[22] Lamikiz, A., de Lacalle, L.N., Sanchez, J.A., Salgado, M.A., 2005. Cutting force integration at the CAM stage in the high-speed milling of complex surfaces.
International Journal of Computer Integrated Manufacturing, 18(7):586-600.
[23] Lauwers, B., Dejonghe, P., Kruth, J.P., 2003. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation.
Computer-Aided Design, 35(5):421-432.
[24] Lavernhe, S., Tournier, C., Lartigue, C., 2008. Kinematical performance prediction in multi-axis machining for process planning optimization.
The International Journal of Advanced Manufacturing Technology, 37(5-6):534-544.
[25] Morishige, K., Kase, K., Takeuchi, Y., 1997. Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining.
The International Journal of Advanced Manufacturing Technology, 13(6):393-400.
[26] Park, S.C., Chang, M., 2010. Tool path generation for a surface model with defects.
Computers in Industry, 61(1):75-82.
[27] Pekerman, D., Elber, G., Kim, M.S., 2008. Self-intersection detection and elimination in freeform curves and surfaces.
Computer-Aided Design, 40(2):150-159.
[28] Radzevich, S.P., 2006. A closed-form solution to the problem of optimal tool-path generation for sculptured surface machining on multi-axis NC machine.
Mathematical and Computer Modelling, 43(3-4):222-243.
[29] Shan, Y., Wang, S.L., Tong, S.G., 2000. Uneven offset method of NC tool path generation for free-form pocket machining.
Computers in Industry, 43(1):97-103.
[30] Shen, H.Y., Fu, J.Z., He, Y., Yao, X.H., 2012. On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools.
International Journal of Machine Tools and Manufacture, 60:14-26.
[31] Takeuchi, Y., Watanabe, T., 1992. Generation of 5-axis control collision-free tool path and postprocessing for NC data.
CIRP Annals-Manufacturing Technology, 41(1):539-542.
[32] Tournier, C., Duc, E., 2002. A surface based approach for constant scallop height tool-path generation.
The International Journal of Advanced Manufacturing Technology, 19(5):318-324.
[33] Vahebi Nojedeh, M., Habibi, M., Arezoo, B., 2011. Tool path accuracy enhancement through geometrical error compensation.
International Journal of Machine Tools and Manufacture, 51(6):471-482.
[34] Vijayaraghavan, A., Sodemann, A., Hoover, A., Mayor, J.R., David, D., 2010. Trajectory generation in high-speed, high-precision micromilling using subdivision curves.
International Journal of Machine Tools and Manufacture, 50(4):394-403.
[35] Wang, G., Shan, Y., 2005. Compensation of electrode orbiting in electrical discharge machining based on non-uniform offsetting.
International Journal of Machine Tools and Manufacture, 45(14):1628-1634.
[36] Xu, J.H., Zhang, S.Y., Tan, J.R., Liu, X.J., 2012. Non-redundant tool trajectory generation for surface finish machining based on geodesic curvature matching.
The International Journal of Advanced Manufacturing Technology, 62(9-12):1169-1178.
Open peer comments: Debate/Discuss/Question/Opinion
<1>