Full Text:   <3207>

Suppl. Mater.: 

CLC number: TP391.73; TB653

On-line Access: 2013-03-04

Received: 2012-06-28

Revision Accepted: 2012-12-10

Crosschecked: 2013-02-18

Cited: 4

Clicked: 7429

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.3 P.187-197

http://doi.org/10.1631/jzus.A1200160


Collisionless tool orientation smoothing above blade stream surface using NURBS envelope* #


Author(s):  Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Ri-na Sa

Affiliation(s):  . State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   xujh@zju.edu.cn

Key Words:  Tool orientation smoothing (TOS), Blade stream surface, Triangular facet, NURBS envelope, Surface elastic energy


Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Ri-na Sa. Collisionless tool orientation smoothing above blade stream surface using NURBS envelope*#[J]. Journal of Zhejiang University Science A, 2013, 14(3): 187-197.

@article{title="Collisionless tool orientation smoothing above blade stream surface using NURBS envelope*#",
author="Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Ri-na Sa",
journal="Journal of Zhejiang University Science A",
volume="14",
number="3",
pages="187-197",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200160"
}

%0 Journal Article
%T Collisionless tool orientation smoothing above blade stream surface using NURBS envelope*#
%A Jing-hua Xu
%A Shu-you Zhang
%A Jian-rong Tan
%A Ri-na Sa
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 3
%P 187-197
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200160

TY - JOUR
T1 - Collisionless tool orientation smoothing above blade stream surface using NURBS envelope*#
A1 - Jing-hua Xu
A1 - Shu-you Zhang
A1 - Jian-rong Tan
A1 - Ri-na Sa
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 3
SP - 187
EP - 197
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200160


Abstract: 
In five-axis machining, tool orientation above a blade stream surface may lead to tool collision and a decrease in workpiece rigidity. Hence, collisionless tool orientation smoothing (TOS) becomes an important issue. On the basis of a constant scallop height tool path, the triangular facets in the faces, vertices format are constructed from cutter contact (CC) using the Voronoi incremental algorithm. The cutter location (CL) points candidate set is represented by an oblique elliptic cone whose vertex lies at CC using NURBS envelope. Whether the CL point is above its CC is judged by the dot product between the normal vector and the point on triangulation nearest to the CL point. The curvatures at CC are obtained by fitting a moving least square (MLS) quadratic patch to the local neighborhood of a vertex and calculating eigenvectors and eigenvalues of the Hessian matrix. Triangular surface elastic energy is employed as the weight in selection from the NURBS envelope. The collision is judged by NURBS surface intersection. TOS can then be expressed by selecting a CL point for each CC point and converted into a numerical control (NC) code automatically according to the postprocessor type of the machine center. The proposed method is verified by finishing of a cryogenic turboexpander impeller of air separation equipment.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abele, E., Korff, D., 2011. Avoidance of collision-caused spindle damages—challenges, methods and solutions for high dynamic machine tools. CIRP Annals-Manufacturing Technology, 60(1):425-428. 


[2] Balasubramaniam, M., Ho, S., Sarma, S., Adachi, Y., 2002. Generation of collision-free 5-axis tool paths using a haptic surface. Computer-Aided Design, 34(4):267-279. 


[3] Balasubramaniam, M., Sarma, S.E., Marciniak, K., 2003. Collision-free finishing toolpaths from visibility data. Computer-Aided Design, 35(4):359-374. 


[4] Beudaert, X., Pechard, P.Y., Tournier, C., 2011. 5-Axis tool path smoothing based on drive constraints. International Journal of Machine Tools and Manufacture, 51(12):958-965. 


[5] Bi, Y.B., Cheng, Q.L., Dong, H.Y., Ke, Y.L., 2009. Machining distortion prediction of aerospace monolithic components. Journal of Zhejiang University-SCIENCE A, 10(5):661-668. 


[6] Castagnetti, C., Duc, E., Ray, P., 2008. The domain of admissible orientation concept: a new method for five-axis tool path optimisation. Computer-Aided Design, 40(9):938-950. 


[7] Chen, H.P., Kuo, H.H., Tsay, D.M., 2009. Removing tool marks of blade surfaces by smoothing five-axis point milling cutter paths. Journal of Materials Processing Technology, 209(17):5810-5817. 


[8] Chen, K.H., 2011. Investigation of tool orientation for milling blade of impeller in five-axis machining. The International Journal of Advanced Manufacturing Technology, 52(1-4):235-244. 


[9] Chiou, J.C.J., 2005. Optimal tool orientation for five-axis tool-end machining by swept envelope approach. Journal of Manufacturing Science and Engineering, 127(4):810-818. 


[10] Chui, K.L., Chiu, W.K., Yu, K.M., 2008. Direct 5-axis tool-path generation from point cloud input using 3D biarc fitting. Robotics and Computer-Integrated Manufacturing, 24(2):270-286. 


[11] Davim, P., 2012. Machining of Complex Sculptured Surfaces.  Flank Milling of Complex Surfaces. Springer,Germany :


[12] de Lacalle, L.N.L., Lamikiz, A., Sanchez, J.A., Salgado, M.A., 2007. Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. International Journal of Machine Tools and Manufacture, 47(2):388-400. 


[13] de Lacalle, L.N.L., Rodriguez, A., Lamikiz, A., Celaya, A., Alberdi, R., 2011. Five-axis machining and burnishing of complex parts for surface roughness improvement. Materials and Manufacturing Processes, 26(8):997-1003. 


[14] Dombovari, Z., Iglesias, A., Zatarain, M., Insperger, T., 2011. Prediction of multiple dominant chatter frequencies in milling processes. International Journal of Machine Tools and Manufacture, 51(6):457-464. 


[15] Fan, J., Ball, A., 2008. Quadric method for cutter orientation in five-axis sculptured surface machining. International Journal of Machine Tools and Manufacture, 48(7-8):788-801. 


[16] Fard, M.J.B., Feng, H.Y., 2010. Effective determination of feed direction and tool orientation in five-axis flat-end milling. Journal of Manufacturing Science and Engineering, 132(6):061011


[17] Fard, M.J.B., Feng, H.Y., 2011. New criteria for tool orientation determination in five-axis sculptured surface machining. International Journal of Production Research, 49(20):5999-6015. 


[18] Heinemann, R., Hinduja, S., 2012. A new strategy for tool condition monitoring of small diameter twist drills in deep-hole drilling. International Journal of Machine Tools and Manufacture, 52(1):69-76. 


[19] Jin, G.Q., Li, W.D., Tsai, C.F., Wang, L., 2011. Adaptive tool-path generation of rapid prototyping for complex product models. Journal of Manufacturing Systems, 30(3):154-164. 


[20] Kaneko, J., Horio, K., 2011. Tool posture planning method for continuous 5-axis control machining on machine tool coordinate system to optimize motion of translational axes. International Journal of Automation Technology, 5(5):729-737. 

[21] Korakianitis, T., Hamakhan, I.A., Rezaienia, M.A., Wheeler, A.P.S., Avital, E.J., Williams, J.J.R., 2012. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (circle) method. Applied Energy, 89(1):215-227. 


[22] Lamikiz, A., de Lacalle, L.N., Sanchez, J.A., Salgado, M.A., 2005. Cutting force integration at the CAM stage in the high-speed milling of complex surfaces. International Journal of Computer Integrated Manufacturing, 18(7):586-600. 


[23] Lauwers, B., Dejonghe, P., Kruth, J.P., 2003. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Computer-Aided Design, 35(5):421-432. 


[24] Lavernhe, S., Tournier, C., Lartigue, C., 2008. Kinematical performance prediction in multi-axis machining for process planning optimization. The International Journal of Advanced Manufacturing Technology, 37(5-6):534-544. 


[25] Morishige, K., Kase, K., Takeuchi, Y., 1997. Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining. The International Journal of Advanced Manufacturing Technology, 13(6):393-400. 


[26] Park, S.C., Chang, M., 2010. Tool path generation for a surface model with defects. Computers in Industry, 61(1):75-82. 


[27] Pekerman, D., Elber, G., Kim, M.S., 2008. Self-intersection detection and elimination in freeform curves and surfaces. Computer-Aided Design, 40(2):150-159. 


[28] Radzevich, S.P., 2006. A closed-form solution to the problem of optimal tool-path generation for sculptured surface machining on multi-axis NC machine. Mathematical and Computer Modelling, 43(3-4):222-243. 


[29] Shan, Y., Wang, S.L., Tong, S.G., 2000. Uneven offset method of NC tool path generation for free-form pocket machining. Computers in Industry, 43(1):97-103. 


[30] Shen, H.Y., Fu, J.Z., He, Y., Yao, X.H., 2012. On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. International Journal of Machine Tools and Manufacture, 60:14-26. 


[31] Takeuchi, Y., Watanabe, T., 1992. Generation of 5-axis control collision-free tool path and postprocessing for NC data. CIRP Annals-Manufacturing Technology, 41(1):539-542. 


[32] Tournier, C., Duc, E., 2002. A surface based approach for constant scallop height tool-path generation. The International Journal of Advanced Manufacturing Technology, 19(5):318-324. 


[33] Vahebi Nojedeh, M., Habibi, M., Arezoo, B., 2011. Tool path accuracy enhancement through geometrical error compensation. International Journal of Machine Tools and Manufacture, 51(6):471-482. 


[34] Vijayaraghavan, A., Sodemann, A., Hoover, A., Mayor, J.R., David, D., 2010. Trajectory generation in high-speed, high-precision micromilling using subdivision curves. International Journal of Machine Tools and Manufacture, 50(4):394-403. 


[35] Wang, G., Shan, Y., 2005. Compensation of electrode orbiting in electrical discharge machining based on non-uniform offsetting. International Journal of Machine Tools and Manufacture, 45(14):1628-1634. 


[36] Xu, J.H., Zhang, S.Y., Tan, J.R., Liu, X.J., 2012. Non-redundant tool trajectory generation for surface finish machining based on geodesic curvature matching. The International Journal of Advanced Manufacturing Technology, 62(9-12):1169-1178. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE