Full Text:   <3770>

CLC number: TE122; TE347

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-01-23

Cited: 5

Clicked: 5679

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.2 P.147-154

http://doi.org/10.1631/jzus.A1200165


Identification of waterflooded zones and the impact of waterflooding on reservoir properties of the Funing Formation in the Subei Basin, China*


Author(s):  Peng-hui Zhang1, Jin-liang Zhang1, Wei-wei Ren1, Jun Xie2, Ming Li3, Jing-zhe Li4, Fang Ding1, Jin-kai Wang2, Zi-rui Dong5

Affiliation(s):  1. College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China; more

Corresponding email(s):   jinliang@bnu.edu.cn

Key Words:  Waterflooding, Reservoir properties, Neural network, Gao 6 Fault-block, Gaoji Oilfield


Share this article to: More <<< Previous Article|

Peng-hui Zhang, Jin-liang Zhang, Wei-wei Ren, Jun Xie, Ming Li, Jing-zhe Li, Fang Ding, Jin-kai Wang, Zi-rui Dong. Identification of waterflooded zones and the impact of waterflooding on reservoir properties of the Funing Formation in the Subei Basin, China[J]. Journal of Zhejiang University Science A, 2013, 14(2): 147-154.

@article{title="Identification of waterflooded zones and the impact of waterflooding on reservoir properties of the Funing Formation in the Subei Basin, China",
author="Peng-hui Zhang, Jin-liang Zhang, Wei-wei Ren, Jun Xie, Ming Li, Jing-zhe Li, Fang Ding, Jin-kai Wang, Zi-rui Dong",
journal="Journal of Zhejiang University Science A",
volume="14",
number="2",
pages="147-154",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200165"
}

%0 Journal Article
%T Identification of waterflooded zones and the impact of waterflooding on reservoir properties of the Funing Formation in the Subei Basin, China
%A Peng-hui Zhang
%A Jin-liang Zhang
%A Wei-wei Ren
%A Jun Xie
%A Ming Li
%A Jing-zhe Li
%A Fang Ding
%A Jin-kai Wang
%A Zi-rui Dong
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 2
%P 147-154
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200165

TY - JOUR
T1 - Identification of waterflooded zones and the impact of waterflooding on reservoir properties of the Funing Formation in the Subei Basin, China
A1 - Peng-hui Zhang
A1 - Jin-liang Zhang
A1 - Wei-wei Ren
A1 - Jun Xie
A1 - Ming Li
A1 - Jing-zhe Li
A1 - Fang Ding
A1 - Jin-kai Wang
A1 - Zi-rui Dong
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 2
SP - 147
EP - 154
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200165


Abstract: 
This paper describes the identification of waterflooded zones and the impact of waterflooding on reservoir properties of sandstones of the Funing Formation at the gao 6 Fault-block of the gaoji Oilfield, in the Subei Basin, east China. This work presents a new approach based on a back-propagation neural network using well log data to train the network, and then generating a cross-plot plate to identify waterflooded zones. A neural network was designed and trained, and the results show that the new method is better than traditional methods. For a comparative study, two representative wells at the gao 6 Fault-block were chosen for analysis: one from a waterflooded zone, and the other from a zone without waterflooding. Results from this analysis were used to develop a better understanding of the impact of waterflooding on reservoir properties. A range of changes are shown to have taken place in the waterflooded zone, including changes in microscopic pore structure, fluids, and minerals.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Aminian, K., Ameri, S., 2005. Application of artificial neural networks for reservoir characterization with limited data. Journal of Petroleum Science & Engineering, 49(3-4):212-222. 


[2] Balch, R.S., Stubbs, B.S., Weiss, W.W., 1999. Using Artificial Intelligence to Correlate Multiple Seismic Attributes to Reservoir Properties. , SPE 56733 Presented at the SPE Annual Technical Conference, Houston, TX, 3-6. :3-6. 

[3] Baldwin, J.L., Bateman, R.M., Wheatley, C.L., 1990. Application of a neural network to the problem of mineral identification from well logs. The Log Analyst, 3:279-293. 

[4] Bedrikovetsky, P.G., Nguyer, T.K., Hage, A., Ciccarelli, J.R., Wahab, M.A., Chang, G., Souza, A.L., Furtado, C.A., 2011. Taking advantage of injectivity decline for improved recovery during waterflood with horizontal wells. Journal of Petroleum Science and Engineering, 78(2):288-303. 


[5] Benaouda, B., Wadge, G., Whitmarh, R.B., Rothwell, R., MacLeod, G.C., 1999. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs—an example from the Ocean Drilling Program. Geophysical Journal International, 136(2):477-491. 


[6] Chawath, A., Quenes, A., Weiss, W.W., 1997. Interwell Property Mapping Using Crosswell Seismic Attributes. , SPE 38747 Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, 6-9. :6-9. 

[7] Chen, Z., 2003. The reservoir heterogeneity and remaining oil distribution in Funing Formation in the Seventh Block of Gaoji Oilfield. Offshore Oil, (in Chinese),23(2):51-54. 

[8] Folk, R.L., 1980.  Petrology of Sedimentary Rocks. Hemphill Publishing,Austin, Texas, USA :

[9] Jenkins, C., Ouenes, A., Zellou, A., Wingard, J., 2009. Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models. AAPG Bulletin, 93(11):1597-1608. 


[10] Li, Y., Li, R., Chen, L., Song, N., Fang, J., 2011. Thermal history reconstruction and hydrocarbon accumulation period discrimination of Jinhu Depression in Subei Basin. Acta Sedimentologica Sinica, (in Chinese),29(2):395-401. 

[11] Ogiesoba, O.C., 2010. Porosity prediction from seismic attributes of the Ordovician Trenton-Black River groups, Rochester field, southern Ontario. AAPG Bulletin, 94(11):1673-1693. 


[12] Qi, L.S., Carr, T.R., Goldstein, R.H., 2004. Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas. AAPG Bulletin, 88(3):303-324. 


[13] Rogers, S.J., Fang, J.H., Karr, C.L., Stanley, D.A., 1992. Determination of lithology from well logs using a neural network. AAPG Bulletin, 76:731-739. 

[14] Rogers, S.J., Chen, H.C., Kopaska-Merkel, D.C., Fang, J.H., 1995. Predicting permeability from porosity using artificial neural networks. AAPG Bulletin, 79:1786-1797. 

[15] Saggaf, M.M., Nebrija, E.L., 2003. Estimation of missing logs by regularized neural networks. AAPG Bulletin, 87(8):1377-1389. 


[16] Soo, H., Radke, C.J., 1986. A filtration modal for the flow of dilute, stable emulsions in porous media–I. theory. Chemical Engineering Science, 41(2):263-272. 


[17] Soo, H., Radke, C.J., 1986. A filtration modal for the flow of dilute, stable emulsions in porous media–II. parameter evaluation and estimation. Chemical Engineering Science, 41(2):273-281. 


[18] Yang, W., Liang, G., Zhao, X., Zhang, X., Zhao, P., 2000. Water flooding out characteristics of Anan sandstone oil reservoir at its medium later development stage. Petroleum Exploration and Development, 27(5):80-83. 

[19] Zhang, J., Xie, J., 2011.  Development Geology. (in Chinese), Petroleum Industry Press,Beijing :

[20] Zhang, J., Qin, L., Zhang, Z., 2008. Depositional facies, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in central Tarim Basin, western China. Journal of Asian Earth Sciences, 33(1-2):42-60. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE