CLC number: TU399
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-11-15
Cited: 1
Clicked: 5266
Jian-guo Cai, Ya Zhou, Jian Feng, Yi-xiang Xu. Mechanical behavior of a shelter system based on cable-strut structures[J]. Journal of Zhejiang University Science A, 2012, 13(12): 895-903.
@article{title="Mechanical behavior of a shelter system based on cable-strut structures",
author="Jian-guo Cai, Ya Zhou, Jian Feng, Yi-xiang Xu",
journal="Journal of Zhejiang University Science A",
volume="13",
number="12",
pages="895-903",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200172"
}
%0 Journal Article
%T Mechanical behavior of a shelter system based on cable-strut structures
%A Jian-guo Cai
%A Ya Zhou
%A Jian Feng
%A Yi-xiang Xu
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 12
%P 895-903
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200172
TY - JOUR
T1 - Mechanical behavior of a shelter system based on cable-strut structures
A1 - Jian-guo Cai
A1 - Ya Zhou
A1 - Jian Feng
A1 - Yi-xiang Xu
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 12
SP - 895
EP - 903
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200172
Abstract: A shelter system based on cable-strut structures, consisting of compressive struts and high-tensile elements, is described in this paper. The deployment of the shelter is achieved by tightening inclined cables. Lower cables are used to terminate the deployment. The state of self-stress of the cable-strut structures in the fully deployed configuration is given, and the minimum strut length and the maximum load design of the shelter are discussed. The mechanical behavior of the system was studied under symmetrical and asymmetrical load cases. The results show that the shelter in the deployed configuration satisfies the ultimate limit and the serviceability limit state conditions. Finally, the stability of the cable-strut system is investigated, considering the effect of imperfections on the buckling of the shelter. We conclude that the influence of imperfections based on the consistent imperfection mode method is not significant.
[1]Cai, J.G., Feng, J., Wang, K., 2012. Deployment simulation of cable-strut structures considering cable sliding. Science China: Technological Sciences, 55(12):3263-3269.
[2]De Temmerman, I.N., Mollaert, M., Van Mele, T., De Laet, L., 2007. Design and analysis of a foldable mobile shelter system. International Journal of Space Structures, 22(3):161-168.
[3]Gioia, F., Dureisseix, D., Motro, R., Maurin, B., 2012. Design and analysis of a foldable/unfoldable corrugated architectural curved envelop. Journal of Mechanical Design, 134(3):031003.
[4]Hangai, Y., Wu, M., 1999. Analytical method of structural behaviors of a hybrid structure consisting of cables and rigid structures. Engineering Structures, 21(8):726-736.
[5]Hosozawa, O., Shimamura, K., Mizutani, T., 1999. The role of cables in large span spatial structures: introduction of recent space structures with cables in Japan. Engineering Structures, 21(8):795-804.
[6]Juan, S.H., Mirats Tur, J.M., 2008. Tensegrity frameworks: static analysis review. Mechanism and Machine Theory, 43(7):859-881.
[7]Li, Y., Vu, K.K., Liew, J.Y.R., 2011. Deployable cable-chain structures: morphology, structural response and robustness study. Journal of the International Association for Shell and Spatial Structures, 52(168):83-96.
[8]Liew, J.Y.R., Tran, T.C., 2006. Novel deployable strut -tensioned membrane structures. Journal of the International Association for Shell and Spatial Structures, 47: 17-29.
[9]Liew, J.Y.R., Lee, B.H., Wang, B.B., 2003. Innovative use of star prism (SP) and di-pyramid (DP) for spatial structures. Journal of Constructional Steel Research, 59(3):335-357.
[10]Liu, H.B., Chen, Z.H., Wang, X.D., 2011. Simulation of pre-stressing construction of suspen-dome considering sliding friction based large curvature assumption. Advanced Science Letters, 4(8-10):2713-2718.
[11]Luchsinger, R.H., Sydow, A., Crettol, R., 2011. Structural behavior of asymmetric spindle-shaped tensairity girders under bending loads. Thin-Walled Structures, 49(9):1045-1053.
[12]Mao, D.C., Luo, Y.Z., You, Z., 2007. A generalization of Kempe’s linkages. Journal of Zhejiang University- SCIENCE A, 7(8):1365-1371.
[13]Makowski, Z.S., 1981. Analysis, Design and Construction of Double-layer Grids. Applied Science Publishers Ltd., London.
[14]Melin, N., 2004. Application of Bennett Mechanisms to Long-Span Shelters. University of Oxford.
[15]Motro, R., 1992. Tensegrity systems: the state of the art. International Journal of Space Structures, 7(2):75-83.
[16]Motro, R., 2003. Tensegrity: Structural Systems for the Future. Kogan Page Science, London.
[17]Quirant, J., Kazi-Aoual, M.N., Motro, R., 2003. Designing tensegrity systems: the case of a double layer grid. Engineering Structures, 25(9):1121-1130.
[18]Rhode-Barbarigos, L., Bel Hadj Ali, N., Motro, R., Smith, I.F.C., 2012. Design aspects of a deployable tensegrity- hollow-rope footbridge. International Journal of Space Structures, 27(2):81-96.
[19]Saitoh, M., Okada, A., 1999. The role of string in hybrid string structures. Engineering Structures, 21(8):756-769.
[20]Seffen, K.A., 2012. Compliant shell mechanisms. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 370:2010-2016.
[21]Vu, K.K., Liew, J.Y.R., Krishnapillai, A., 2005. Commutative algebra in structural analysis of deployable tension-strut structures. Journal of the International Association for Shell and Spatial Structures, 46:173-178.
[22]Vu, K.K., Liew, J.Y.R., Anandasivam, K., 2006a. Deployable tension-strut structures: from concept to implementation. Journal of Constructional Steel Research, 62(3):195-209.
[23]Vu, K.K., Liew, J.Y.R., Anandasivam, K., 2006b. Deployable tension-strut structures: structural morphology study and alternative form creations. International Journal of Space Structures, 21(3):149-164.
[24]Wang, B.B., 1998. Cable-strut systems: part II—cable-strut. Journal of Constructional Steel Research, 45(3):291-299.
[25]Wang, B.B., 2004. Free-standing Tension Structures: from Tensegrity Systems to Cable-Strut Systems. Spon Press, New York.
[26]Wang, B.B., Li, Y.Y., 2003a. Novel cable-strut grids made of prisms: part I. basic theory and design. Journal of International Association of Shell and Spatial Structures, 44:93-108.
[27]Wang, B.B., Li, Y.Y., 2003b. Novel cable-strut grids made of prisms: part II. deployable and architectural studies. Journal of International Association of Shell and Spatial Structures, 44:109-125.
[28]Xue, W.C., Liu, S., 2009. Design optimization and experimental study on beam string structures. Journal of Constructional Steel Research, 65(1):70-80.
Open peer comments: Debate/Discuss/Question/Opinion
<1>