Full Text:   <4954>

CLC number: TU473.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-01-23

Cited: 2

Clicked: 9532

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.2 P.79-93

http://doi.org/10.1631/jzus.A1200184


Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications*


Author(s):  Ning Wang1, Kui-hua Wang1, Wen-bing Wu2

Affiliation(s):  1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   wn1290@163.com

Key Words:  Soil-pile interaction, Complex impedance, Pile tip, Vertical vibration, Sediment


Share this article to: More |Next Article >>>

Ning Wang, Kui-hua Wang, Wen-bing Wu. Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications[J]. Journal of Zhejiang University Science A, 2013, 14(2): 79-93.

@article{title="Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications",
author="Ning Wang, Kui-hua Wang, Wen-bing Wu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="2",
pages="79-93",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200184"
}

%0 Journal Article
%T Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications
%A Ning Wang
%A Kui-hua Wang
%A Wen-bing Wu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 2
%P 79-93
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200184

TY - JOUR
T1 - Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications
A1 - Ning Wang
A1 - Kui-hua Wang
A1 - Wen-bing Wu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 2
SP - 79
EP - 93
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200184


Abstract: 
In this paper, a model named fictitious soil pile was introduced to solve the boundary coupled problem at the pile tip. In the model, the soil column between pile tip and bedrock was treated as a fictitious pile, which has the same properties as the local soil. The tip of the fictitious soil pile was assumed to rest on a rigid rock and no tip movement was allowed. In combination with the plane strain theory, the analytical solutions of vertical vibration response of piles in a frequency domain and the corresponding semi-analytical solutions in a time domain were obtained using the Laplace transforms and inverse Fourier transforms. A parametric study of pile response at the pile tip and head showed that the thickness and layering of the stratum between pile tip and bedrock have a significant influence on the complex impedances. Finally, two applications of the analytical model were presented. One is to identify the defects of the pile shaft, in which the proposed model was proved to be accurate to identify the location as well as the length of pile defects. Another application of the model is to identify the sediment thickness under the pile tip. The results showed that the sediment can lead to the decrease of the pile stiffness and increase of the damping, especially when the pile is under a low frequency load.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Alves, A.M.L., Lopes, F.R., Randloph, M.F., Danziger, B.R., 2009. Investigations on the dynamic behavior of small-strain diameter pile driven in soft clay. Canadian Geotechnical Journal, 46(12):1418-1430. 


[2] Barros, P.L.A., 2006. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils. International Journal for Numerical and Analytical Methods in Geomechanics, 30(7):683-702. 


[3] Chehab, A.G., El Naggar, M.H., 2003. Design of efficient base isolation for hammers and presses. Soil Dynamics and Earthquake Engineering, 23(2):127-141. 


[4] DAppolonia, D.J., Lambe, T.W., 1971. Performance of four foundations on end bearing piles. Journal of the Soil Mechanics and Foundations Division, 97(1):77-93. 

[5] Davies, T.G., Sen, R., Banerjee, P.K., 1985. Dynamic behavior of pile groups in inhomogeneous soil. Journal of Geotechnical Engineering, 111(12):1365-1379. 


[6] Dobry, R., Vincente, E., ORourke, M.J., Roesset, J.M., 1982. Horizontal stiffness and damping of single piles. Journal of the Geotechnical Engineering Divison, 108(3):439-459. 

[7] El Naggar, M.H., Novak, M., 1994. Non-linear model for dynamic axial pile response. Journal of Geotechnical Engineering, 120(2):308-329. 


[8] El Sharnouby, B., Novak, M., 1990. Stiffness constants and interaction factors for vertical response of pile groups. Canadian Geotechnical Journal, 27(6):813-822. 


[9] Emani, P.K., Maheshwari, B.K., 2009. Dynamic impedances of pile groups with embedded caps in homogeneous elastic soils using CIFECM. Soil Dynamics and Earthquake Engineering, 29(6):963-973. 


[10] Gazetas, G., 1984. Seismic response of end bearing single piles. Soil Dynamics and Earthquake Engineering, 3(2):92-93. 

[11] Ghazavi, M., 2008. Response of tapered piles to axial harmonic loading. Canadian Geotechnical Journal, 45(11):1622-1628. 


[12] Jin, B., Zhong, Z., 2001. Lateral dynamic compliance of pile embedded in poroelastic half space. Soil Dynamics and Earthquake Engineering, 21(6):519-525. 


[13] Kuhlemeyer, R.L., 1979. Static and dynamic laterally loaded floating piles. Journal of the Geotechnical Engineering Division, 105(2):289-304. 

[14] Kuhlemeyer, R.L., 1979. Vertical vibration of piles. Journal of the Geotechnical Engineering Division, 105(2):273-287. 

[15] Liang, R.Y., Husein, A.I., 1993. Simplified dynamic method for pile-driving control. Journal of Geotechnical Engineering, 119(4):694-713. 


[16] Liao, S.T., Roesset, J.M., 1997. Dynamic response of intact piles to impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics, 21(4):255-275. 


[17] Liao, S.T., Roesset, J.M., 1997. Identification of defects in piles through dynamic testing. International Journal for Numerical and Analytical Methods in Geomechanics, 21(4):277-291. 


[18] Lysmer, J., Richart, F.E., 1966. Dynamic response of footings to vertical loading. Journal of the Soil Mechanics and Foundations Division, 92(1):65-91. 

[19] Mamoon, S.M., Kaynia, A.M., Banerjee, P.K., 1990. Frequency domain analysis of piles and pile groups. Journal of Engineering Mechanics, 116(10):2237-2257. 


[20] Masoumi, H.R., Degrande, G., 2008. Numerical modelling of free field vibrations due to pile driving using a dynamic soil-structure interaction formulation. Journal of Computational and Applied Mathematics, 215(2):503-511. 


[21] Milln, M.A., Domnguez, J., 2009. Simplified BEM/FEM model for dynamic analysis of structures on piles and pile groups in viscoelastic and poroelastic soils. Engineering Analysis with Boundary Elements, 33(1):25-34. 


[22] Nogami, T., 1983. Dynamic group effect in axial response of grouped piles. Journal of Geotechnical Engineering, 109(2):228-243. 


[23] Nogami, T., Novak, M., 1976. Soil-pile interaction in vertical vibration. Earthquake Engineering & Structural Dynamics, 4(3):277-293. 


[24] Nogami, T., Konagai, K., 1986. Time domain axial response of dynamically loaded single piles. Journal of Engineering Mechanics, 112(11):1241-1249. 


[25] Nogami, T., Konagai, K., 1987. Dynamic response of vertically loaded nonlinear pile foundations. Journal of Geotechnical Engineering, 113(2):147-160. 


[26] Novak, M., 1974. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 11(4):574-598. 


[27] Novak, M., 1977. Vertical vibration of floating piles. Journal of the Engineering Mechanics Division, 103(1):153-168. 

[28] Novak, M., Beredugo, Y.O., 1972. Vertical vibration of embedded footings. Journal of the Soil Mechanics and Foundations Division, 98(12):1291-1310. 

[29] Novak, M., El Sharnouby, B., 1983. Stiffness and damping constants for single piles. Journal of Geotechnical Engineering, 109(7):961-974. 


[30] Novak, M., Nogami, T., Aboul-Ella, F., 1978. Dynamic soil reactions for plane strain case. Journal of the Engineering Mechanics Division, 104(4):953-959. 

[31] Padrn, L.A., Aznrez, J.J., Maeso, O., 2007. BEM-FEM coupling model for the dynamic analysis of piles and pile groups. Engineering Analysis with Boundary Elements, 31(6):473-484. 


[32] Padrn, L.A., Aznrez, J.J., Maeso, O., Saitoh, M., 2012. Impedance functions of end-bearing inclined piles. Soil Dynamics and Earthquake Engineering, 38:97-108. 


[33] Pak, R.Y.S., Jennings, P.C., 1987. Elastodynamic response of pile under transverse excitations. Journal of Engineering Mechanics, 113(7):1101-1116. 


[34] Randolph, M.F., Wroth, C.P., 1978. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division, 104(12):1465-1488. 

[35] Randolph, M.F., Simons, H.A., 1986. An Improved Soil Model for One-Dimensional Pile Driving Analysis. , Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, 1-17. :1-17. 

[36] Rovithis, E.N., Pitilakis, K.D., Mylonakis, G.E., 2011. A note on a pseudo-natural SSI frequency for coupled soil-pile-structure systems. Soil Dynamics and Earthquake Engineering, 31(7):873-878. 


[37] Senm, R., Kausel, E., Banerjee, P.K., 1985. Dynamic analysis of pile groups embedded in non-homogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6):507-524. 


[38] Shahmohamadi, M., Khojasteh, A., Rahimian, M., Pak, R.Y.S., 2011. Seismic response of an embedded pile in a transversely isotropic half-space under incident P-wave excitations. Soil Dynamics and Earthquake Engineering, 31(3):361-371. 


[39] Taherzadeh, R., Clouteau, D., Cottereau, R., 2009. Simple formulas for the dynamic stiffness of pile groups. Earthquake Engineering and Structural Dynamics, 38(15):1665-1685. 


[40] Wang, J.H., Zhou, X.L., Lu, J.F., 2003. Dynamic response of pile groups embedded in a poroelastic medium. Soil Dynamics and Earthquake Engineering, 23(3):53-60. 


[41] Wang, K.H., Zhang, Z.Q., Leo, J.C., Xie, K.H., 2008. Dynamic torsional response of an end bearing pile in saturated poroelastic medium. Computers and Geotechnics, 35(3):450-458. 


[42] Wang, K.H., Wu, W.B., Zhang, Z.Q., Leo, C.J., 2010. Vertical dynamic response of an inhomogeneous viscoelastic pile. Computers and Geotechnics, 37(4):536-544. 


[43] West, R.P., Heelis, M.E., Pavlović, M.N., Wylie, G.B., 1997. Stability of end-bearing piles in a non-homogeneous elastic foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 21(12):845-861. 


[44] Wu, G., Finn, W., 1997. Dynamic elastic analysis of pile foundations using finite element method in the frequency domain. Canadian Geotechnical Journal, 34(1):34-43. 


[45] Wu, G., Finn, W., 1997. Dynamic nonlinear analysis of pile foundations using finite element method in the time domain. Canadian Geotechnical Journal, 34(1):44-52. 


[46] Yu, C.P., Liao, S.T., 2006. Theoretical basis and numerical simulation of impedance log test for evaluating the integrity of columns and piles. Canadian Geotechnical Journal, 43(12):1238-1248. 


[47] Zeng, X., Rajapakse, R.K.N.D., 1999. Dynamic axial load transfer from elastic pile to poroelastic medium. Journal of Engineering Mechanics, 125(9):1048-1055. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE