Full Text:   <5104>

CLC number: TV3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-03-06

Cited: 2

Clicked: 6462

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.4 P.256-267

http://doi.org/10.1631/jzus.A1200196


Coupled elasto-plasticity damage constitutive models for concrete*


Author(s):  Qiang Xu1, Jian-yun Chen1,2, Jing Li2, Gang Xu3

Affiliation(s):  1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China; more

Corresponding email(s):   xuqiang528826@163.com

Key Words:  Concrete, Damage constitutive models, Hsieh-Ting-Chen four-parameter yield function, Uniaxial tension, Uniaxial compression, Gravity dam, Arch dam


Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu. Coupled elasto-plasticity damage constitutive models for concrete[J]. Journal of Zhejiang University Science A, 2013, 14(4): 256-267.

@article{title="Coupled elasto-plasticity damage constitutive models for concrete",
author="Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="4",
pages="256-267",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200196"
}

%0 Journal Article
%T Coupled elasto-plasticity damage constitutive models for concrete
%A Qiang Xu
%A Jian-yun Chen
%A Jing Li
%A Gang Xu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 4
%P 256-267
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200196

TY - JOUR
T1 - Coupled elasto-plasticity damage constitutive models for concrete
A1 - Qiang Xu
A1 - Jian-yun Chen
A1 - Jing Li
A1 - Gang Xu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 4
SP - 256
EP - 267
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200196


Abstract: 
The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete. Based on the energy dissipation principle, the hsieh-Ting-Chen four-parameter yield function is used. The model can reflect different strength characteristics of concrete in tension and compression, and reduce the limitation and lacuna of the traditional damage constitutive models for concrete. Furthermore, numerical test for concrete stress-strain relation under uniaxial tension and compression is given. Moreover, the damage process of concrete gravity dam is calculated and analyzed in seismic load. Compared with other damage constitutive models, the proposed model contains only one unknown parameter and the other parameters can be found in the hsieh-Ting-Chen four-parameter yield function. The same damage evolution law, which is used for tension and compression, is good for determining stress-strain constitutive and damage characteristics in complex stress state. This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ahmadi, M.T., Izadinia, M., Bachmann, H., 2001. A discrete crack joint model for nonlinear dynamic analysis of concrete arch dam. Computers & Structures, 79(4):403-420. 


[2] Aifantis, E.C., 1999. Strain gradient interpretation of size effects. International Journal of Fracture, 95(1-4):299-314. 


[3] Bazant, Z.P., Xiang, Y., Prat, P.C., 2012. Microplane model for concrete. I: stress-strain boundaries and finite strain. Journal of Engineering Mechanics, 122(3):245-254. 


[4] Brencich, A., Gambarotta, L., 2001. Isotropic damage model with different tensile-compressive response for brittle materials. International Journal of Solids and Structures, 38(34-35):5865-5892. 


[5] Calayir, Y., Karaton, M., 2005. A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems. Soil Dynamics and Earthquake Engineering, 25(11):857-869. 


[6] Chen, X.Z., Zhu, H.P., Chen, C.Y., 2005. Structural damage identification using test static data based on grey system theory. Journal of Zhejiang University-SCIENCE, 6A(8):790-796. 


[7] Comi, C., Perego, U., 2001. Fracture energy based bi- dissipative damage model for concrete. International Journal of Solids and Structures, 38(36-37):6427-6454. 


[8] Contrafatto, L., Cuomo, M., 2006. A framework of elastic-plastic damaging model for concrete under multiaxial stress states. International Journal of Plasticity, 22(12):2272-2370. 


[9] Ding, F.X., Yu, Z.W., 2007. Strength criterion for plain concrete under multiaxial stress states based on damage Poisson’s ratio. Acta Mechanica Solida Sinica, 28(1):13-19. 

[10] Dragon, A., Halm, D., Dsoyer, T., 2000. Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications. Computer Methods in Applied Mechanics and Engineering, 183(3-4):331-352. 


[11] Krajcinovic, D., 1983. Constitutive equation for damaging platerials. Journal of Applied Mechanics, 50(2):355-360. 


[12] Kratzig, W.B., Polling, R., 2004. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Computers and Structures, 82(15-16):1201-1215. 


[13] Kuna-Ciskal, H., Skrzypek, J.J., 2004. CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. Engineering Fracture Mechanics, 71(4-6):681-698. 


[14] Lin, G., Hu, Z.Q., 2005. Earthquake safety assessment of concrete arch and gravity dams. Earthquake Engineering and Engineering Vibration, 4(2):251-264. 

[15] Loland, K.E., 1980. Continuous damage model for load response estimation of concrete. Cement and Concrete Research, 10(1):392-492. 


[16] Marfia, S., Rinaldi, Z., Sacco, E., 2004. Softening behavior of reinforced concrete beams under cyclic loading. International Journal of Solids and Structures, 41(11-12):3293-3316. 


[17] Mazars, J., Pijaudier-Cabot, G., 1989. Continuum damage theory-application to concrete. Engineering Machine, 115(2):345-365. 


[18] Mirzabozorg, H., Ghaemian, M., 2005. Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach. Earthquake Engineering & Structural Dynamics, 34(3):247-269. 


[19] Ortiz, M., 1985. A constitutive theory for the inelastic behavior of concrete. Mechanics of Materials, 4(1):67-93. 


[20] Pan, J.W., Zhang, C.H., Wang, J.T., Xu, Y.J., 2009. Seismic damage-cracking analysis of arch dams using different earthquake input mechanisms. Science in China Series E: Technological Sciences, 52(2):518-529. 


[21] Peng, X.H., Yang, C.H., Wan, L., 2004. Simplified continuum damage mechanics model for concrete. Chinese Journal of Rock Mechanics and Engineering, (in Chinese),23(19):3232-3239. 

[22] Tao, X.Y., Phillips, D.V., 2005. A simplified isotropic damage model for concrete under bi-axial stress states. Cement and Concrete Composites, 27(6):716-726. 


[23] Wang, G.L., Pekau, O.A., Zhang, C.H., Wang, S.M., 2000. Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics. Engineering Fracture Mechanics, 65(1):67-87. 


[24] Zhang, D.S., 1982. Test research on complete stress-strain curve of concrete. Journal of Hunan University, (in Chinese),9(4):58-72. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE