Full Text:   <3519>

Summary:  <2681>

CLC number: TM911.42; N945.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-08-20

Cited: 1

Clicked: 6490

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.9 P.679-685

http://doi.org/10.1631/jzus.A1300146


Control design of 60 kW PEMFC generation system for residential applications*


Author(s):  Ying-ying Zhang1, Ying Zhang1, Xi Li2, Guang-yi Cao3

Affiliation(s):  1. Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001, China; more

Corresponding email(s):   triciayyz@163.com

Key Words:  Proton exchange membrane fuel cell (PEMFC), Generation system, Control strategy, decoupling control, Optimal seeking control


Ying-ying Zhang, Ying Zhang, Xi Li, Guang-yi Cao. Control design of 60 kW PEMFC generation system for residential applications[J]. Journal of Zhejiang University Science A, 2013, 14(9): 679-685.

@article{title="Control design of 60 kW PEMFC generation system for residential applications",
author="Ying-ying Zhang, Ying Zhang, Xi Li, Guang-yi Cao",
journal="Journal of Zhejiang University Science A",
volume="14",
number="9",
pages="679-685",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300146"
}

%0 Journal Article
%T Control design of 60 kW PEMFC generation system for residential applications
%A Ying-ying Zhang
%A Ying Zhang
%A Xi Li
%A Guang-yi Cao
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 9
%P 679-685
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300146

TY - JOUR
T1 - Control design of 60 kW PEMFC generation system for residential applications
A1 - Ying-ying Zhang
A1 - Ying Zhang
A1 - Xi Li
A1 - Guang-yi Cao
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 9
SP - 679
EP - 685
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300146


Abstract: 
This paper presented a control design methodology for a proton exchange membrane fuel cell (PEMFC) generation system for residential applications. The dynamic behavior of the generation system is complex in such applications. A comprehensive control design is very important for achieving a steady system operation and efficiency. The control strategy for a 60 kW generation system was proposed and tested based on the system dynamic model. A two-variable single neuron proportional-integral (PI) decoupling controller was developed for anode pressure and humidity by adjusting the hydrogen flow and water injection. A similar controller was developed for cathode pressure and humidity by adjusting the exhaust flow and water injection. The desired oxygen excess ratio was kept by a feedback controller based on the load current. An optimal seeking controller was used to trace the unique optimal power point. Two negative feedback controllers were used to provide AC power and a suitable voltage for residential loads by a power conditioning unit. Control simulation tests showed that 60 kW PEMFC generation system responded well for computer-simulated step changes in the load power demand. This control methodology for a 60 kW PEMFC generation system would be a competitive solution for system level designs such as parameter design, performance analysis, and online optimization.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Caux, S., Lachaize, J., Fadel, M., Shott, P., Nicod, L., 2005. Modeling and control of a fuel cell system and storage elements in transport applications. Journal of Process Control, 15(4):481-491. 


[2] Chen, P.C., 2011. Output-feedback voltage tracking control for input constrained PEM fuel cell systems. International Journal of Hydrogen Energy, 36(22):14608-14621. 


[3] Chrenko, D., Pra, M.C., Hissel, D., Geweke, M., 2008. Macroscopic modeling of a PEFC system based on equivalent circuits of fuel and oxidant supply. Journal of Fuel Cell Science and Technology, 5(1):011015


[4] Chrenko, D., Pra, M.C., Hissel, D., Bouscayrol, A., 2009. Inversion-based control of a proton exchange membrane fuel cell system using energetic macroscopic representation. Journal of Fuel Cell Science and Technology, 6(2):024501


[5] Hatti, M., Tioursi, M., 2009. Dynamic neural network controller model of PEM fuel cell system. International Journal of Hydrogen Energy, 34(11):5015-5021. 


[6] Kunusch, C., Puleston, P.F., Mayosky, M.A., Fridman, L., 2013. Experimental results applying second order sliding mode control to a PEM fuel cell based system. Control Engineering Practice, 21(5):719-726. 


[7] Panos, C., Kouramas, K.I., Georgiadis, M.C., Pistikopoulos, E.N., 2012. Modelling and explicit model predictive control for PEM fuel cell systems. Chemical Engineering Science, 67(1):15-25. 


[8] Park, G., Gajic, Z., 2012. Sliding mode control of a linearized polymer electrolyte membrane fuel cell model. Journal of Power Sources, 212:226-232. 


[9] Pukrushpan, J.T., Stefanopoulou, A.G., Huei, P., 2002. Modeling and Control for PEM Fuel Cell Stack System. , Proceedings of the American Control Conference, Anchorage, Alaska, USA, 3117-3122. :3117-3122. 


[10] Rodatz, S., Paganelli, G., Guzzella, L., 2003. Optimizing Air Supply Control of a PEM Fuel Cell System. , Proceedings of the American Control Conference, Denver, USA, 2043-2048. :2043-2048. 


[11] Tong, S.W., Qian, D.W., 2013. Control of a fuel cell based on the SIRMs fuzzy inference model. International Journal of Hydrogen Energy, 38(10):4124-4131. 


[12] Yang, Y.P., Liu, Z.W., Wang, F.C., 2008. An application of indirect model reference adaptive control to a low-power proton exchange membrane fuel cell. Journal of Power Sources, 179(2):618-630. 


[13] Zhang, Y.Y., Yu, Q.C., Cao, G.Y., Zhu, X.J., 2006. Research on a simulated 60 kW PEMFC cogeneration system for domestic application. Journal of Zhejiang Universit-SCIENCE A, 7(3):450-457. 


[14] Zhang, Y.Y., Sun, J.C., Zhang, Y., Li, X., Cao, G.Y., 2011. Dynamic modeling and simulation test of a 60 kW PEMFC generation system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(6):475-482. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE