References
[1] Balasubramanian, B., Lopez Ortiz, A., Kaytakoglu, S., Harrison, D.P., 1999. Hydrogen from methane in a single-step process.
Chemical Engineering Science, 54(15-16):3543-3552.
[2] Carvill, B.T., Hufton, J.R., Anand, M., Sircar, S., 1996. Sorption-enhanced reaction process.
AIChE Journal, 42(10):2765-2772.
[3] Chanburanasiri, N., Ribeiro, A.M., Rodrigues, A.E., Arpornwichanop, A., Laosiripojana, N., Praserthdam, P., Assabumrungrat, S., 2011. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst.
Industrial & Engineering Chemistry Research, 50(24):13662-13671.
[4] Ding, Y., Alpay, E., 2000. Adsorption-enhanced steam-methane reforming.
Chemical Engineering Science, 55(18):3929-3940.
[5] Dueso, C., Abad, A., Garca-Labiano, F., de Diego, L.F., Gayn, P., Adnez, J., Lyngfelt, A., 2010. Reactivity of a NiO/Al
2O
3 oxygen carrier prepared by impregnation for chemical-looping combustion.
Fuel, 89(11):3399-3409.
[6] Feng, H.Z., Lan, P.Q., Wu, S.F., 2012. A study on the stability of a NiO-CaO/Al
2O
3 complex catalyst by La
2O
3 modification for hydrogen production.
International Journal of Hydrogen Energy, 37(19):14161-14166.
[7] Feng, J.T., Lin, Y.J., Evans, D.G., Duan, X., Li, D.Q., 2009. Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al
2O
3 catalyst derived from layered double hydroxides.
Journal of Catalysis, 266(2):351-358.
[8] Gong, L.Q., Chen, J.X., Qiu, Y.J., Zhang, J.Y., 2005. Effects of calcinations temperature on structure and catalytic performance of Ni/MgO-Al
2O
3 catalysts for partial oxidation of methane.
Journal of Fuel Chemistry and Technology, (in Chinese),33(2):224-228.
[9] Han, C., Harrison, D.P., 1994. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen.
Chemical Engineering Science, 49(24):5875-5883.
[10] Hao, Z.G., Zhu, Q.S., Jiang, Z., Hou, B.L., Li, H.Z., 2009. Characterization of aerogel Ni/Al
2O
3 catalysts and investigation on their stability for CH
4-CO
2 reforming in a fluidized bed.
Fuel Processing Technology, 90(1):113-121.
[11] Harrison, D.P., 2008. Sorption-enhanced hydrogen production: a review.
Industrial & Engineering Chemistry Research, 47(17):6486-6501.
[12] He, J., Wu, S.F., 2007. The characteristics of sorption enhanced steam methane reforming for hydrogen production on a complex catalyst.
Chemical Reaction Engineering and Technology, (in Chinese),23(5):470-473.
[13] Inoue, M., Kondo, Y., Inui, T., 1988. An ethylene glycol derivative of boehmite.
Inorganic Chemistry, 27(2):215-221.
[14] Inoue, M., Kominami, H., Inui, T., 1991. Reaction of aluminium alkoxides with various glycols and the layer structure of their products.
Journal of the Chemical Society, Dalton Transactions, (12):3331-3336.
[15] Inoue, M., Kominami, H., Inui, T., 1994. Synthesis of large pore-size and large pore-volume aluminas by glycothermal treatment of aluminium alkoxide and subsequent calcinations.
Journal of Materials Science, 29(9):2459-2466.
[16] Liu, H.P., Lu, G.Z., Guo, Y., Wang, Y.Q., Guo, Y.L., 2009. Synthesis of mesoporous Pt/Al
2O
3 catalysts with high catalytic performance for hydrogenation of acetophenone.
Catalysis Communications, 10(9):1324-1329.
[17] Oyekunle, L.O., Ikpekri, O.B., 2004. Modeling of hydrodesulfurization catalysts. I. Influence of catalyst pore structures on the rate of demetallization.
Industrial & Engineering Chemistry Research, 43(21):6647-6653.
[18] Seo, J.G., Youn, M.H., Park, S., Jung, J.C., Kim, P., Chung, J.S., Song, I.K., 2009. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas.
Journal of Power Sources, 186(1):178-184.
[19] Sun, N.N., Wen, X., Wang, F., Wei, W., Sun, Y.H., 2010. Effect of pore structure on Ni catalyst for CO
2 reforming of CH
4
.
Energy & Environmental Science, 3(3):366-369.
[20] Wang, S.P., Yan, S.L., Ma, X.B., Gong, J.L., 2011. Recent advances in capture of carbon dioxide using alkali-metal-based oxides.
Energy & Environmental Science, 4(10):3805-3819.
[21] Wu, S.F., Wang, L.L., 2010. Improvement of the stability of a ZrO
2-modified Ni-nano-CaO sorption complex catalyst for ReSER hydrogen production.
International Journal of Hydrogen Energy, 35(13):6518-6524.
[22] Wu, S.F., Li, Q.H., Kim, J.N., Yi, K.B., 2008. Properties of a nano CaO/Al
2O
3 CO
2 sorbent.
Industrial & Engineering Chemistry Research, 47(1):180-184.
[23] Wu, S.F., Li, L.B., Zhu, Y.Q., Wang, X.Q., 2010. A microsphere catalyst complex with nano CaCO
3 precursor for hydrogen production used in ReSER process.
Engineering Science, 8(1):22-26.
[24] Xiu, G.H., Li, P., Rodrigues, A.E., 2003. Adsorption-enhanced steam-methane reforming with intraparticle-diffusion limitations.
Chemical Engineering Journal, 95(1-3):83-93.
[25] Xu, Z., Li, Y., Zhang, J.Y., Chang, L., Zhou, R.Q., Duan, Z.T., 2001. Bound-state Ni species: a superior form in Ni-based catalyst for CH
4/CO
2 reforming.
Applied Catalysis A: General, 210(1-2):45-53.
Open peer comments: Debate/Discuss/Question/Opinion
<1>