Full Text:   <3048>

Summary:  <2384>

CLC number: TU311.4; TU383

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-04-25

Cited: 3

Clicked: 6407

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.5 P.331-350

http://doi.org/10.1631/jzus.A1300248


A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling


Author(s):  Yao-zhi Luo, Chao Yang

Affiliation(s):  Space Structures Research Center, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   Luoyz@zju.edu.cn

Key Words:  Membrane wrinkling, Vector-form hybrid particle-element method (VHPEM), Shell-based model, Pseudo-dynamic scheme, Explicit time integration, Membrane structures


Yao-zhi Luo, Chao Yang. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling[J]. Journal of Zhejiang University Science A, 2014, 15(5): 331-350.

@article{title="A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling",
author="Yao-zhi Luo, Chao Yang",
journal="Journal of Zhejiang University Science A",
volume="15",
number="5",
pages="331-350",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300248"
}

%0 Journal Article
%T A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling
%A Yao-zhi Luo
%A Chao Yang
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 5
%P 331-350
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300248

TY - JOUR
T1 - A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling
A1 - Yao-zhi Luo
A1 - Chao Yang
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 5
SP - 331
EP - 350
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300248


Abstract: 
The wrinkling phenomenon is a commonly-known problem in many fields of engineering applications. Using a general structural analysis framework of the vector-form hybrid particle-element method (VHPEM), this paper presents a newly developed shell-based numerical model for the geometrically nonlinear wrinkling analysis of thin membranes. VHPEM is rooted in vector mechanics and physical perspective. It discretizes the analyzed domain into a group of finite particles linked by canonical elements, and the motions of the free particles are governed by Newton’s second law while the constrained ones follow the prescribed paths. An adaptive convected material frame is adopted for a general kinematical description. Internal forces related to the non-zero bending rigidity of a membrane can be efficiently evaluated by the rotation deformation in a set of deformation coordinates after eliminating rigid body motions simply by a fictitious reverse motion. To overcome the numerical difficulties associated with wrinkles, a pseudo-dynamic scheme using the explicit time integration is introduced into this method. Structural nonlinearity can be easily handled without iterative operations or any other special modification. The wrinkling behavior can be readily obtained by performing a pseudo bifurcation analysis incorporated into the VHPEM. The numerical results reveal that the VHPEM has good reliability and accuracy on solving the membrane wrinkling problem.

向量式混合质点单元薄壳非线性分析方法的膜材褶皱形变模拟研究

研究目的:建立一种适用于理想膜结构可进行高精度褶皱形变模拟的稳定可靠的数值分析技术及方法。
创新要点:根据薄壳理论,在向量式混合质点单元方法(VFPEM)薄膜计算理论的基础上,引入弯曲内力分析模型并与其进行组合,发展了一种能够描述膜材面外变形的新型非线性薄壳计算理论,同时给出了将其应用于褶皱形变模拟的关键求解技术。
研究方法:1.针对薄壳计算模型中的弯曲内力,利用移动基础架构和逆向刚体运动的概念扣除刚体转动,在只含有节点独立转动自由度的单元变形坐标系下根据虚功原理和平衡条件进行计算; 2.借助于薄壳非线性屈曲模拟方法,引入合理的初始扰动作为诱发理想平面膜材中形成褶皱的有效机制;3.采用拟动力显式数值积分技术求解质点运动方程,通过追踪质点平衡位置来获得稳态的褶皱构形。
重要结论:采用本文模型和方法可以模拟薄膜结构在面内荷载作用下褶皱的分布模式、具体构形信息及应力状态,计算过程不存在收敛性困难,结果准确。

关键词:薄膜褶皱;向量式混合质点单元法;薄壳模型;拟静力策略;显式时间积分;膜结构

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cerda, E., Ravi-Chandar, K., Mahadevan, L., 2002. Thin films: wrinkling of an elastic sheet under tension. Nature, 419(6907):579-580.

[2]Cook, R.D., Malkus, D.S., Plesha, M.E., 1989. Concepts and Applications of Finite Element Analysis, 3rd Edition. John Wiley & Son, Toronto, p.397-404.

[3]de Borst, R.D., Crisfield, M.A., Remmers, J.J.C., et al., 2012. Nonlinear Finite Element Analysis of Solids and Structures, 2nd Edition. John Wiley & Son, Chichester, p.144-148.

[4]Du, X., Wang, C., Wan, Z., 2006. Advances of the study on wrinkles of space membrane structures. Chinese Journal of Mechanical Engineering, 36(2):187-199 (in Chinese).

[5]Epstein, M., 2003. Differential equation for the amplitude of wrinkles. AIAA Journal, 41(2):327-329.

[6]Flores, F.G., Onãte, E., 2011. Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element. Finite Elements in Analysis and Design, 47(9):982-990.

[7]Hallquist, J.O., 2006. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation.

[8]Huang, R., Nayyar, V., Ravi-Chandar, K., 2012. Stretch- induced stress patterns and wrinkles in hyperelastic thin sheets. APS March Meeting, Boston, Massachusetts.

[9]Iwasa, T., Natori, M.C., Higuchi, K., 2004. Evaluation of tension field theory for wrinkling analysis with respect to the post-buckling study. Journal of Applied Mechanics, 71(4):532-540.

[10]Jenkins, C.H.M., Korde, U.A., 2006. Membrane vibration experiments: an historical review and recent results. Journal of Sound and Vibration, 295(3-5):602-613.

[11]Jenkins, C.H.M., Haugen, F., Spicher, W.H., 1998. Experimental measurement of wrinkling in membranes undergoing planar deformation. Experimental Mechanics, 38(2):147-152.

[12]Jenkins, C.H.M., Hossain, N.M.A., Woo, K., et al., 2006. Membrane wrinkling. In: Jenkins, C.H.M. (Ed.), Recent Advances in Gossamer Spacecraft, AIAA, Reston, USA, p.109-164.

[13]Kang, S., Im, S., 1997. Finite element analysis of wrinkling membranes. Journal of Applied Mechanics, 64(2):263-269.

[14]Kim, T., Puntel, E., Fried, E., 2012. Numerical study of the wrinkling of a stretched thin sheet. International Journal of Solids and Structures, 49(5):771-782.

[15]Lee, E., Youn, S., 2006. Finite element analysis of wrinkling membrane structures with large deformations. Finite Elements in Analysis and Design, 42(8-9):780-791.

[16]Lee, K., Lee, S., 2002. Analysis of gossamer space structures using assumed strain formulation solid shell elements. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, USA. AIAA, Reston, USA, No. 2002-1559.

[17]Leifer, J., Belvin, W.K., 2003. Prediction of wrinkle amplitudes in thin film membranes using finite element modeling. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, USA. AIAA, Reston, USA, No. 2003-1983.

[18]Lien, K.H., Chiou, Y.J., Wang, R.Z., et al., 2010. Vector form intrinsic finite element analysis of nonlinear behavior of steel structures exposed to fire. Engineering Structures, 32(1):80-92.

[19]Mansfield, E.H., 1969. Tension field theory. 12th International Congress of Applied Mechanics, Standford University, USA. Springer-Verlag, Berlin, Germany, p.305-320

[20]Miller, R.K., Hedgepeth, J.M., 1985. Finite element analysis of partly wrinkled membranes. Computers & Structures, 20(1-3):631-639.

[21]Nayyar, V., 2010. Stretch-induced Compressive Stress and Wrinkling in Elastic Thin Sheet. MS Thesis, The University of Texas at Austin, Austin, USA.

[22]Raible, T., Tegeler, K., Löhnert, S., et al., 2005. Development of a wrinkling algorithm for orthotropic membrane materials. Computer Methods in Applied Mechanics and Engineering, 194(21-24):2550-2568.

[23]Rezaiee-pajand, M., Alamatian, J., 2010. The dynamic relaxation method using new formulation for fictitious mass and damping. Structural Engineering and Mechanics, 34(1):109-133.

[24]Roddeman, D.G., Drukker, J., Oomens, C.W.J., et al., 1987a. The wrinkling of thin membranes: part I-theory. Journal of Applied Mechanics, 54(4):884-887.

[25]Roddeman, D.G., Drukker, J., Oomens, C.W.J., et al., 1987b. The wrinkling of thin membranes: part II-numerical analysis. Journal of Applied Mechanics, 54(4):888-892.

[26]Rodriguez, J., Rio, G., Cadou, J.M., et al., 2011. Numerical study of dynamic relaxation with kinetic damping applied to inflatable fabric structures with extensions for 3D solid element and non-linear behavior. Thin-Walled Structures, 49(11):1468-1474.

[27]Shaw, A., Roy, D., 2007. Analysis of wrinkled and slack membranes through an error reproducing mesh-free method. International Journal of Solids and Structures, 44(11-12):3939-3972.

[28]Shih, C., Wang, Y.K., Ting, E.C., 2004. Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and example. Journal of Mechanics, 20(2):133-143.

[29]Stein, M., Hedgepeth, J.M., 1961. Analysis of partly wrinkled membranes. Tech Notes D-813, NASA, Washington.

[30]Su, X., Abdi, F., Taleghani, B., et al., 2003. Wrinkling analysis of a Kapton square membrane under tensile loading. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, USA. AIAA, Reston, USA, No. 2003-1982.

[31]Ting, E.C., Shih, C., Wang, Y.K., 2004. Fundamentals of a vector form intrinsic finite element: Part II. plane solid element. Journal of Mechanics, 20(2):123-132.

[32]Ting, E.C., Duan, Y.F., Wu, T.Y., 2012. Vector Mechanics of Structural Analysis. Science Press, Beijing (in Chinese).

[33]Underwood, P., 1983. Dynamic relaxation: a review. In: Belytschko, T., Hughes, T.J.R. (Eds.), Computational Methods for Transient Analysis, Elsevier Science Publishers, New York, p.245-265.

[34]Wagner, H., 1929. Flat sheet metal girders with very thin metal webs. Zeitschrfitfiir Flugtech Motorluftsch, 20:200-314 (in German).

[35]Wang, R.Z., Chuang, C.C., Wu, T.Y., et al., 2005. Vector form analysis of space truss structure in large elastic-plastic deformation. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 17(4):633-646.

[36]Wong, Y.W., Pellegrino, S., 2002. Computation of wrinkle amplitudes in thin membranes. 43rd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, USA. AIAA, Reston, USA, No. 2002-1369.

[37]Wong, Y.W., Pellegrino, S., 2006a. Wrinkled membranes. Part I: experiments. Journal of Mechanics of Materials and Structures, 1(1):1-23.

[38]Wong, Y.W., Pellegrino, S., 2006b. Wrinkled membranes. Part II: analytical models. Journal of Mechanics of Materials and Structures, 1(1):25-59.

[39]Wong, Y.W., Pellegrino, S., 2006c. Wrinkled membranes. Part III: numerical simulations. Journal of Mechanics of Materials and Structures, 1(1):61-93.

[40]Yang, C., Shen, Y.B., Luo, Y.Z., 2014. An efficient numerical shape analysis for light weight membrane structures. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 15(4):255-271. [10.1631/jzus. A1300245]

[41]Yu, Y., 2010. Progressive Collapse of Space Steel Structures Based on the Finite Particle Method. PhD Thesis, Zhejiang University, Hangzhou, China (in Chinese).

[42]Zheng, L., 2009. Wrinkling of Dielectric Elastomer Membranes. PhD Thesis, California Institute of Technology, Pasadena, CA.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE