Full Text:   <2689>

Summary:  <262>

CLC number: Q66

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-25

Cited: 1

Clicked: 5322

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.9 P.732-742

http://doi.org/10.1631/jzus.A13b0287


Using a form-finding model to analyze the effect of actin bundles on the stiffness of a cytoskeleton network*


Author(s):  Bao-long Li, Yi-fan Wang, Jing-hai Gong

Affiliation(s):  . Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding email(s):   gongjh@sjtu.edu.cn

Key Words:  Cytoskeleton network, Form-finding model, Elastic modulus, Actin bundles


Bao-long Li, Yi-fan Wang, Jing-hai Gong. Using a form-finding model to analyze the effect of actin bundles on the stiffness of a cytoskeleton network[J]. Journal of Zhejiang University Science A, 2014, 15(9): 732-742.

@article{title="Using a form-finding model to analyze the effect of actin bundles on the stiffness of a cytoskeleton network",
author="Bao-long Li, Yi-fan Wang, Jing-hai Gong",
journal="Journal of Zhejiang University Science A",
volume="15",
number="9",
pages="732-742",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A13b0287"
}

%0 Journal Article
%T Using a form-finding model to analyze the effect of actin bundles on the stiffness of a cytoskeleton network
%A Bao-long Li
%A Yi-fan Wang
%A Jing-hai Gong
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 9
%P 732-742
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A13b0287

TY - JOUR
T1 - Using a form-finding model to analyze the effect of actin bundles on the stiffness of a cytoskeleton network
A1 - Bao-long Li
A1 - Yi-fan Wang
A1 - Jing-hai Gong
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 9
SP - 732
EP - 742
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A13b0287


Abstract: 
Networks of actin filaments and bundles are ubiquitous in cellular cytoskeletons, but the elasticity of the network is not well understood. In this paper, a computational model based on form-finding analysis is proposed to investigate the stiffness of cytoskeleton networks consisting of actin filaments and bundles. The model shows that networks with parallel bundles aligned in the stretching direction are stiffer than those with randomly distributed bundles. The results provide a mechanical explanation for the experimental observation that cells primarily create parallel rather than disordered bundles during cell adhesion and cell motion. The effect of filament undulations on network stiffness is explored briefly. The results show that undulations can soften the network by increasing the bending-dominated deformations in filaments and bundles. Finally, we find that the effect of the relative density of bundles depends on their orientation. Increasing the density of randomly distributed bundles has no effect on the stiffness of cells, but softens the cytoskeleton network. In contrast, the stiffness of networks of parallel bundles first increases, then reduces as the relative density of bundles increases. The stiffest network is a mixture of actin filaments and bundles.

基于找形模型研究微丝束对细胞骨架刚度的影响

研究目的:基于找形分析建立的细胞骨架力学模型研究微丝束对细胞骨架刚度的影响。
创新要点:目前存在的细胞模型很少考虑微丝束对细胞力学特性的重要作用。本文基于细胞找形模型模拟了同时包含微丝和微丝束的细胞骨架网络结构,并且分析了细胞中微丝束的排列方向、微丝束的含量以及微丝波动对细胞刚度的影响。
研究方法:基于找形模型,随机生成由微丝、微丝束(梁单元)以及交联蛋白(索单元)形成的细胞骨架网络结构,依靠非线性有限元计算和样本统计,计算出模型的弹性模量。通过分别改变模型中微丝束的排列方向、微丝束的含量以及模型初始最大位移等参数,得出细胞骨架模型的弹性模量随这些参数的变化趋势,以此来研究微丝束对细胞刚度的影响。
重要结论:细胞骨架网络中微丝的波动会导致细胞刚度降低;与拉伸方向平行排列的微丝束可以显著地提高细胞的刚度,相比之下随机分布的微丝束对细胞刚度没有贡献;在微丝材料总量固定的情况下,细胞刚度随着平行排列微丝束含量的增加呈现出先升高后降低的趋势。
细胞骨架网络;找形模型;弹性模量;微丝束

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Coughlin, M.F., Stamenovic, D., 2003. A prestressed cable network model of the adherent cell cytoskeleton. Biophysical Journal, 84(2):1328-1336. 


[2] Ethier, C.R., Simmons, C.A., 2007. Introductory Biomechanics: from Cells to Organisms, Cambridge University Press,:


[3] Ferrer, J.M., Lee, H., Chen, J., 2008. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proceedings of the National Academy of Sciences, USA, 105(27):9221


[4] Furuike, S., Ito, T., Yamazaki, M., 2001. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Letter, 498(1):72-75. 


[5] Gardel, M., Shin, J., MacKintosh, F., 2004. Elastic behavior of cross-linked and bundled actin networks. Science, 304(5675):1301-1305. 


[6] Gong, J.H., Zhang, D.X., Tseng, Y., 2013. Form-finding model shows how cytoskeleton network stiffness is realized. PLoS ONE, 8(10):e77417


[7] Huisman, E.M., van Dillen, T., Onck, P.R., 2007. Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior. Physical Review Letters, 99(20):208103


[8] Kang, J., Steward, R.L., Kim, Y., 2011. Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach. Journal of Theoretical Biology, 274(1):109-119. 


[9] Kasza, K., Broedersz, C., Koenderink, G., 2010. Actin filament length tunes elasticity of flexibly cross-linked actin networks. Biophysical Journal, 99(4):1091-1100. 


[10] Kim, T., Hwang, W., Kamm, R., 2009. Computational analysis of a cross-linked actin-like network. Experimental Mechanics, 49(1):91-104. 


[11] Kim, T., Hwang, W., Lee, H., 2009. Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Computational Biology, 5(7):e1000439


[12] Lim, C.T., Zhou, E.H., Quek, S.T., 2006. Mechanical models for living cells—a review. Journal of Biomechanics, 39(2):195-216. 


[13] Lin, Y.C., Broedersz, C.P., Rowat, A.C., 2010. Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. Journal of Molecular Biology, 399(4):637-644. 


[14] Matsushita, S., Adachi, T., Inoue, Y., 2010. Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis. Journal of Biomechanics, 43(16):3162-3167. 


[15] Onck, P., Koeman, T., van Dillen, T., 2005. Alternative explanation of stiffening in cross-linked semiflexible networks. Physical Review Letters, 95(17):178102


[16] Picu, R.C., 2011. Mechanics of random fiber networks—a review. Soft Matter, 7(15):6768-6785. 


[17] Satcher, R.L., Dewey, C.F., 1996. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophysical Journal, 71(1):109-118. 


[18] Shin, J.H., Mahadevan, L., So, P., 2004. Bending stiffness of a crystalline actin bundle. Journal of Molecular Biology, 337(2):255-261. 


[19] Stamenovic, D., Coughlin, M.F., 2000. A quantitative model of cellular elasticity based on tensegrity. Journal of Biomechanical Engineering, 122(1):39


[20] Stamenovic, D., Ingber, D.E., 2002. Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1(1):95-108. 


[21] Stricker, J., Falzone, T., Gardel, M.L., 2010. Mechanics of the F-actin cytoskeleton. Journal of Biomechanics, 43(1):9-14. 


[22] Tseng, Y., Schafer, B.W., Almo, S.C., 2002. Functional synergy of actin filament cross-linking proteins. Journal of Biological Chemistry, 277(28):25609-25616. 


[23] Tseng, Y., Kole, T.P., Lee, J.S.H., 2005. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochemical and Biophysical Research Communications, 334(1):183-192. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE