Full Text:   <4292>

Summary:  <2107>

CLC number: TK14

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-02-10

Cited: 4

Clicked: 5265

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lei Fu

http://orcid.org/0000-0003-3446-3700

Tie-yu Gao

http://orcid.org/0000-0002-3588-8180

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.3 P.241-249

http://doi.org/10.1631/jzus.A1400073


Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines


Author(s):  Lei Fu, Zhen-ping Feng, Guo-jun Li, Qing-hua Deng, Yan Shi, Tie-yu Gao

Affiliation(s):  Key Laboratory of Thermo-fluid Science and Engineering of MOE, School of Energy & Power Engineering, Xian Jiaotong University, Xian 710049, China; more

Corresponding email(s):   leifu@mail.xjtu.edu.cn, sunmoon@mail.xjtu.edu.cn

Key Words:  Micro radial turbine, Integrated optimization design, Bearing and shafting, Performance test


Lei Fu, Zhen-ping Feng, Guo-jun Li, Qing-hua Deng, Yan Shi, Tie-yu Gao. Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines[J]. Journal of Zhejiang University Science A, 2015, 16(3): 241-249.

@article{title="Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines",
author="Lei Fu, Zhen-ping Feng, Guo-jun Li, Qing-hua Deng, Yan Shi, Tie-yu Gao",
journal="Journal of Zhejiang University Science A",
volume="16",
number="3",
pages="241-249",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400073"
}

%0 Journal Article
%T Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines
%A Lei Fu
%A Zhen-ping Feng
%A Guo-jun Li
%A Qing-hua Deng
%A Yan Shi
%A Tie-yu Gao
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 3
%P 241-249
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400073

TY - JOUR
T1 - Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines
A1 - Lei Fu
A1 - Zhen-ping Feng
A1 - Guo-jun Li
A1 - Qing-hua Deng
A1 - Yan Shi
A1 - Tie-yu Gao
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 3
SP - 241
EP - 249
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400073


Abstract: 
The aerodynamic performance, structural strength, and wheel weight are three important factors in the design process of the radial turbine for micro gas turbines. This study presents the experimental validation process of this integrated optimization design method by using the similarity theory. Cold modeling tests and investigations into the aerodynamic characteristics were performed. Experimental results showed that the aerodynamic efficiency of the micro radial turbine is 84.3% at the design point while also satisfying the aerodynamic and strength requirements. Meanwhile, the total weight of the turbine wheel is 3.8 kg which has only a 52.8% mass of the original design. This indicates that the radial turbine designed through this technique has a high aerodynamic performance, and thus can be applied to micro gas turbines. The results validated that this integrated optimization design method is reliable.

微型燃气轮机向心涡轮一体化寻优设计方法的试验验证

目的:根据微型燃气轮机的特点及其应用领域,针对其核心部件向心涡轮的设计,提出一体化寻优设计方法,并搭建向心涡轮性能试验台进行试验验证,以期检验一体化设计方法的可靠性,获得微型向心涡轮高转速性能试验方法并解决性能试验中出现的实际问题。
创新点:1. 一体化设计方法是以向心涡轮气动性能、叶轮材料强度和叶轮整体重量为优化目标的全新寻优设计方法;2. 针对悬臂式高速小型轴系解决微型向心涡轮高速试验轴承轴系设计问题。
方法:1. 搭建和完善包含多个子系统的试验台,并给出轴承设计的结果;2. 根据相似理论和微型向心涡轮一体化寻优设计结果,对原型进行模化及涡轮试验件的加工;3. 开展微型向心涡轮高速性能试验,针对向心涡轮的通流特性和效率特性进行试验数据采集和结果分析,并评估和验证微型向心涡轮一体化寻优设计方法的可靠性和应用性。
结论:1. 在满足材料强度和整体重量要求的前提下,叶轮气动性能仍具有较高的水平,可应用于100 kW级微型燃气轮机。2. 试验工作验证了本文提出的向心涡轮一体化寻优设计方法的可靠性,发展了微型向心涡轮的综合设计方法,以期在工程领域得到进一步的应用。

关键词:微型燃气轮机;向心涡轮;一体化设计方法;性能试验

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Deng, Q.H., 2008. Design and Development, Aerodynamic Performance Test, and Tip Clearance Flow Characteristics of a Radial Inflow Turbine for 100 kW Microturbines. PhD Thesis, Xi’an Jiaotong University, Xi’an, China (in Chinese).

[2]Deng, Q.H., Niu, J.F., Mao, J.R., et al., 2007a. Experimental and numerical investigation on overall performance of a radial inflow turbine for 100 kW microturbine. Turbo Expo 2007: Power for Land, Sea, and Air, Vol. 3, Montreal, Canada. ASME, USA, p.919-926.

[3]Deng, Q.H., Niu, J.F., Feng, Z.P., 2007b. Tip leakage flow in radial inflow rotor of a microturbine with varying blade-shroud clearance. Turbo Expo 2007: Power for Land, Sea, and Air, Vol. 6, Montreal, Canada. ASME, USA, p.1081-1088.

[4]Ebaid, Y., Bhinder, M.S., Khdairi, F.S., et al., 2002. A unified approach for designing a radial flow gas turbine. Turbo Expo 2002: Power for Land, Sea, and Air, Vol. 1, Amsterdam, The Netherlands. ASME, USA, p.1105-1117.

[5]Feng, Z.P., 1991. Study of the Internal Flow and Separation Characteristics of Radial Inflow Turbine Impellers. PhD Thesis, Xi’an Jiaotong University, Xi’an, China (in Chinese).

[6]Feng, Z.P., Deng, Q.H., Li, J., 2005. Aerothermodynamic design and numerical simulation of radial inflow turbine impeller for a 100 kW microturbine. Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Vol. 1, Nevada, USA. ASME, USA, p.873-880.

[7]Fu, L., Shi, Y., Deng, Q.H., et al., 2012. Integrated optimization design for a radial turbine wheel of a 100 kW-class microturbine. Journal of Engineering for Gas Turbines and Power, 134(1):012301-1/8.

[8]Guo, S., 2004. Blade vibration of radial micro gas turbines. The 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, Paper No. 097.

[9]Huang, X.C., 1981. Cylindrical Parabola Curve Blade Shaping Calculate of Radial Impeller and Mathematics Equation. National Defense Industry Publisher, Beijing, China (in Chinese).

[10]Tan, C.S., Hawthorne, W.R., McCune, J.E., et al., 1984. Theory of blade design for large deflections: part II—annular cascades. Journal of Engineering for Gas Turbines and Power, 106(2):354-365.

[11]Tjokroaminata, W.D., Tan, C.S., Hawthorne, W.R., 1996. A design study of radial inflow turbines with splitter blades in three-dimensional flow. Journal of Turbomachinery, 118(2):353-361.

[12]Watanabe, H., Okamoto, H., Guo, S., et al., 2004. Optimization of microturbine aerodynamics using CFD, inverse design and FEM structural analysis (2nd Report, Turbine Design). Turbo Expo 2004: Power for Land, Sea, and Air, Vol. 5, Vienna, Austria. ASME, USA, p.1545-1552.

[13]Whitfield, A., 1990. The preliminary design of radial inflow turbines. Journal of Turbomachinery, 112(1):50-57.

[14]Xie, Y.H., Deng, Q.H., Feng, Z.P., et al., 2005. Strength design and numerical analysis of radial inflow turbine impeller for a 100 kW microturbine. Turbo Expo 2005: Power for Land, Sea, and Air, Vol. 1, Reno, Nevada, USA. ASME, USA, p.881-888.

[15]Yang, Y.L., Tan, C.S., Hawthorne, W.R., 1993. Aerodynamic design of turbomachinery blading in three-dimensional flow: an application to radial inflow turbines. Journal of Turbomachinery, 115(3):602-612.

[16]Zangeneh-Kazemi, M., 1988. Three-dimensional Design of Radial Inflow Turbines. PhD Thesis, University of Cambridge, Cambridge, England.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE