Full Text:   <3126>

Summary:  <2180>

CLC number: TK121

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-09-29

Cited: 7

Clicked: 7422

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.10 P.789-797

http://doi.org/10.1631/jzus.A1400103


Effect of the inclination angle on the transient performance of a phase change material-based heat sink under pulsed heat loads*


Author(s):  Jiang Lu1, Li-wu Fan2, Yi Zeng3, Yu-qi Xiao2, Xu Xu4, Zi-tao Yu2

Affiliation(s):  1. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China; more

Corresponding email(s):   liwufan@zju.edu.cn

Key Words:  Heat sink, Inclination angle, Melting, Natural convection, Phase change material (PCM), Thermal energy storage, Thermal management


Jiang Lu, Li-wu Fan, Yi Zeng, Yu-qi Xiao, Xu Xu, Zi-tao Yu. Effect of the inclination angle on the transient performance of a phase change material-based heat sink under pulsed heat loads[J]. Journal of Zhejiang University Science A, 2014, 15(10): 789-797.

@article{title="Effect of the inclination angle on the transient performance of a phase change material-based heat sink under pulsed heat loads",
author="Jiang Lu, Li-wu Fan, Yi Zeng, Yu-qi Xiao, Xu Xu, Zi-tao Yu",
journal="Journal of Zhejiang University Science A",
volume="15",
number="10",
pages="789-797",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400103"
}

%0 Journal Article
%T Effect of the inclination angle on the transient performance of a phase change material-based heat sink under pulsed heat loads
%A Jiang Lu
%A Li-wu Fan
%A Yi Zeng
%A Yu-qi Xiao
%A Xu Xu
%A Zi-tao Yu
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 10
%P 789-797
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400103

TY - JOUR
T1 - Effect of the inclination angle on the transient performance of a phase change material-based heat sink under pulsed heat loads
A1 - Jiang Lu
A1 - Li-wu Fan
A1 - Yi Zeng
A1 - Yu-qi Xiao
A1 - Xu Xu
A1 - Zi-tao Yu
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 10
SP - 789
EP - 797
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400103


Abstract: 
The transient performance of a phase change material (PCM)-based heat sink may be affected by its inclination angle because natural convection usually occurs and dominates melting during the operation of the heat sink. An experimental setup was designed and used in this study that allows for the alternation of the inclination angle of the heat sink. The inclination angle was varied from 0° to 90° at increments of 15°, while two pulsed heat loads (20 and 40 W) were adopted. 1-hexadecanol of a nominal melting temperature of 49 °C was selected as the PCM. The transient performance of the heat sink was characterized by the temperature variations at the center of the heat spreader under various conditions. The results showed that the transient performance of the heat sink is able to be improved by simply increasing its inclination angle which then facilitates the natural convection during melting. However, the variation in the performance is not a monotonous function of the inclination angle. Although the time-averaged thermal resistances of the heat sink were shown to be only marginally lowered, the maximum operation times may be greatly extended under the given thermal conditions. For a heat load of 40 W and the maximum allowable temperature of 75 °C, the operation time of the heat sink is extended by up to nearly 67% at an inclination angle of 75° when compared to that of the horizontal case. Based on the cases tested, the optimal inclination angle was found to lie between 60° and 75°.

倾斜角度对基于相变材料的散热器在脉冲式热负荷作用下瞬时性能的影响

研究目的:通过实验方法定量研究在相变材料较为剧烈的熔化传热过程中散热器倾斜角度的改变对其瞬时性能所产生的影响。
创新要点:定量研究在倾斜角度从水平到垂直时,储能式散热器在脉冲式热负荷作用下瞬时性能的变化规律,并在所研究的工况范围内给出了最优的倾斜角度参考值。
研究方法:采用电加热方法模拟电子器件所产生的热源,通过调节电压改变脉冲式热负荷的强度和作用时间,并根据热电偶测量所得的加热表面温度变化来表征储能式散热器的瞬时性能。
重要结论:在一定的倾斜角度下工作,可以有效提升基于相变材料的储能式散热器的瞬时性能。在加热功率为40 W、以75 °C为目标时,其有效保护时间的相对增长可达约67%。
散热器;倾斜角;相变材料;储热;热管理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Akhilesh, R., Narasimhan, A., Balaji, C., 2005. Method to improve geometry for heat transfer enhancement in PCM composite heat sink. International Journal of Heat and Mass Transfer, 48(13):2759-2770. 


[2] Alawadhi, E.M., Amon, C.H., 2003. PCM thermal control unit for portable electronic devices: experimental and numerical studies. IEEE Transactions on Components and Packaging Technologies, 26(1):116-125. 


[3] Al Hallaj, S., Selman, J.R., 2000. A novel thermal management system for electric vehicle batteries using phase-change material. Journal of the Electrochemical Society, 147(9):3231-3236. 


[4] Baby, R., Balaji, C., 2012. Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. International Journal of Heat and Mass Transfer, 55(5-6):1642-1649. 


[5] Duan, X., Naterer, G.F., 2010. Heat transfer in phase change materials for thermal management of electric vehicle battery modules. International Journal of Heat and Mass Transfer, 53(23-24):5176-5182. 


[6] El Omari, K., Kousksou, T., Guer, Y.L., 2011. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling. Applied Thermal Engineering, 31(14-15):3022-3035. 


[7] Etemoglu, A.B., 2007. A brief survey and economical analysis of air cooling for electronic equipments. International Communications in Heat and Mass Transfer, 34(1):103-113. 


[8] Evans, A.G., He, M.Y., Hutchinson, J.W., 2001. Temperature distribution in advanced power electronics systems and the effect of phase change materials on temperature suppression during power pulses. Journal of Electronic Packaging, 123(3):211-217. 


[9] Fan, L.W., Khodadadi, J.M., 2011. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renewable and Sustainable Energy Reviews, 15(1):24-46. 


[10] Fan, L.W., Xiao, Y.Q., Zeng, Y., 2013. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink. International Journal of Thermal Sciences, 70:114-126. 


[11] Fan, L.W., Khodadadi, J.M., Pesaran, A.A., 2013. A parametric study on thermal management of an air-cooled lithiumion battery module for plug-in hybrid electric vehicles. Journal of Power Sources, 238:301-312. 


[12] Faraji, M., El Qarnia, H., 2009. Passive cooling of protruding electronic components by latent heat of fusion storage. Journal of Electronic Packaging, 131(2):021011


[13] Fok, S.C., Shen, W., Tan, F.L., 2010. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. International Journal of Thermal Sciences, 49(1):109-117. 


[14] Garimella, S.V., 2006. Advances in mesoscale thermal management technologies for microelectronics. Microelectronics Journal, 37(11):1165-1185. 


[15] Hatakeyama, T., Ishizuka, M., Takakuwa, S., 2011. Experimental and thermal network study on the performance of a pins studded phase change materials in electronic device cooling. Journal of Thermal Science and Technology, 6(1):164-177. 


[16] Hodes, M., Weinstein, R.D., Pence, S.J., 2002. Transient thermal management of a handset using phase change material (PCM). Journal of Electronic Packaging, 124(4):419-426. 


[17] Hosseinizadeh, S.F., Tan, F.L., Moosania, S.M., 2011. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Applied Thermal Engineering, 31(17-18):3827-3838. 


[18] Jaworski, M., 2012. Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Applied Thermal Engineering, 35:212-219. 


[19] Kamkari, B., Shokouhmand, H., Bruno, F., 2014. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. International Journal of Heat and Mass Transfer, 72:186-200. 


[20] Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2007. Application of phase change materials in thermal management of electronics. Applied Thermal Engineering, 27(17-18):2822-2832. 


[21] Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2008. Transient cooling of electronics using phase change material (PCM)-based heat sinks. Applied Thermal Engineering, 28(8-9):1047-1057. 


[22] Kizilel, R., Lateef, A., Sabbah, R., 2008. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources, 183(1):370-375. 


[23] Kizilel, R., Sabbah, R., Selman, J.R., 2009. An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources, 194(2):1105-1112. 


[24] Krishnan, S., Garimella, S.V., 2004. Analysis of a phase change energy storage system for pulsed power dissipation. IEEE Transactions on Components and Packaging Technologies, 27(1):191-198. 


[25] Krishnan, S., Garimella, S.V., Kang, S.S., 2005. A novel hybrid heat sink using phase change materials for transient thermal management of electronics. IEEE Transactions on Components and Packaging Technologies, 28(2):281-289. 


[26] Mills, A., Al-Hallaj, S., 2005. Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources, 141(2):307-315. 


[27] Nayak, K.C., Saha, S.K., Srinivasan, K., 2006. A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. International Journal of Heat and Mass Transfer, 49(11-12):1833-1844. 


[28] Rao, Z., Wang, S., 2011. A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9):4554-4571. 


[29] Rao, Z., Wang, S., Zhang, G., 2011. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery. Energy Conversion and Management, 52(12):3408-3414. 


[30] Sabbah, R., Kizilel, R., Selman, J.R., 2008. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitations of temperature rise and uniformity of temperature distribution. Journal of Power Sources, 182(2):630-638. 


[31] Saha, S.K., Dutta, P., 2010. Heat transfer correlations for PCM-based heat sinks with plate fins. Applied Thermal Engineering, 30(16):2485-2491. 


[32] Saha, S.K., Dutta, P., 2011. Effect of melt convection on the optimum thermal design of heat sinks with phase change material. Journal of Enhanced Heat Transfer, 18(3):249-259. 


[33] Saha, S.K., Dutta, P., 2012. Thermal management of electronics using PCM-based heat sink subjected to cyclic heat load. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(3):464-473. 


[34] Saha, S.K., Srinivasan, K., Dutta, P., 2008. Studies on optimum distribution of fins in heat sinks filled with phase change materials. Journal of Heat Transfer, 130(3):034505


[35] Setoh, G., Tan, F.L., Fok, S.C., 2010. Experimental studies on the use of a phase change material for cooling mobile phones. International Communications in Heat and Mass Transfer, 37(9):1403-1410. 


[36] Shatikian, V., Ziskind, G., Letan, R., 2005. Numerical investigation of a PCM-based heat sink with internal fins. International Journal of Heat and Mass Transfer, 48(17):3689-3706. 


[37] Shatikian, V., Ziskind, G., Letan, R., 2008. Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. International Journal of Heat and Mass Transfer, 51(5-6):1488-1493. 


[38] Tan, F.L., Tso, C.P., 2004. Cooling of mobile electronic devices using phase change materials. Applied Thermal Engineering, 24(2-3):159-169. 


[39] Tan, F.L., Fok, S.C., 2012. Numerical investigation of phase change material-based heat storage unit on cooling of mobile phone. Heat Transfer Engineering, 33(6):494-504. 


[40] Vesligaj, M.J., Amon, C.H., 1999. Transient thermal management of temperature fluctuations during time varying workloads on portable electronics. IEEE Transactions on Components and Packaging Technologies, 22(4):541-550. 


[41] Wang, X.Q., Mujumdar, A.S., Yap, C., 2007. Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electronic components. International Communications in Heat and Mass Transfer, 34(7):801-808. 


[42] Wang, Y.H., Yang, Y.T., 2011. Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink. Energy, 36(8):5214-5224. 


[43] Webb, B.W., Viskanta, R., 1986. Natural-convection-dominated melting heat transfer in an inclined rectangular enclosure. International Journal of Heat and Mass Transfer, 29(2):183-192. 


[44] Yang, Y.T., Wang, Y.H., 2012. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material. International Journal of Thermal Sciences, 51:155-162. 


[45] Ye, W., Zhu, D., Wang, N., 2012. Effect of the inclination angles on thermal energy storage in a quadrantal cavity. Journal of Thermal Analysis and Calorimetry, 110(3):1487-1492. 


[46] Yoo, D.W., Joshi, Y.K., 2004. Energy efficient thermal management of electronic components using solid-liquid phase change materials. IEEE Transactions on Device and Materials Reliability, 4(4):641-649. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE