Full Text:   <3765>

Summary:  <2090>

CLC number: X52

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-07-18

Cited: 4

Clicked: 9867

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.671-680

http://doi.org/10.1631/jzus.A1400133


Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment*


Author(s):  Kun Xie1, Xiang-xue Wang2, Zheng-jie Liu2, Ahmed Alsaedi3, Tasawar Hayat3, Xiang-ke Wang2,4

Affiliation(s):  1. Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, China; more

Corresponding email(s):   xkwang@ipp.ac.cn

Key Words:  Flower-like &alpha, -Fe2O3 , Arsenate, Sorption, Methylene blue (MB), Photodegradation


Share this article to: More <<< Previous Article|

Kun Xie, Xiang-xue Wang, Zheng-jie Liu, Ahmed Alsaedi, Tasawar Hayat, Xiang-ke Wang. Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment[J]. Journal of Zhejiang University Science A, 2014, 15(8): 671-680.

@article{title="Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment",
author="Kun Xie, Xiang-xue Wang, Zheng-jie Liu, Ahmed Alsaedi, Tasawar Hayat, Xiang-ke Wang",
journal="Journal of Zhejiang University Science A",
volume="15",
number="8",
pages="671-680",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400133"
}

%0 Journal Article
%T Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment
%A Kun Xie
%A Xiang-xue Wang
%A Zheng-jie Liu
%A Ahmed Alsaedi
%A Tasawar Hayat
%A Xiang-ke Wang
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 671-680
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400133

TY - JOUR
T1 - Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment
A1 - Kun Xie
A1 - Xiang-xue Wang
A1 - Zheng-jie Liu
A1 - Ahmed Alsaedi
A1 - Tasawar Hayat
A1 - Xiang-ke Wang
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 671
EP - 680
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400133


Abstract: 
The removal of arsenic from aqueous solution is crucial to human health and environmental pollution. Herein, flower-like &alpha;-Fe2O3 nanostructures were synthesized via a template-free microwave-assisted solvothermal technique, and were applied as adsorbents for the removal of arsenic (As(V)) from aqueous solutions. The results indicated that the synthesized flower-like &alpha;-Fe2O3 showed excellent sorption properties and had a maximum sorption capacity of 47.64 mg/g for As(V). Meanwhile, the experimental results of photodegradation of methylene blue (MB) indicated that the as-synthesized flower-like &alpha;-Fe2O3 exhibited very high photocatalytic performance for the photodegradation of MB and that the as-obtained flower-like &alpha;-Fe2O3 nanostructures were suitable materials in wastewater treatment.

花状氧化铁的制备及其在废水处理中的应用

研究目的:研究花状氧化铁的制备并探讨其对砷的吸附性能和亚甲基蓝的催化性能。
创新要点:1.合成了花状氧化铁;2.发现Langmuir模型能更好地模拟砷的吸附过程;3.发现花状氧化铁对亚甲基蓝有很好的催化降解性能。
研究方法:1.使用扫描电镜、投射电镜、X射线衍射和BET比表面及孔径分析仪对合成的花状氧化铁进行表征;2.采用静态实验法研究砷的吸附性能及亚甲基蓝的催化行为。
重要结论:1.采用一种低成本的溶剂热法合成了花状氧化铁;2.合成的花状氧化铁有着较大的比表面积并对砷有着很好的吸附性能,并且吸附率随着pH的增加而降低。同时发现Langmuir模型能更好地模拟砷的吸附过程;3.亚甲基蓝的初始浓度和花状氧化铁的用量对催化性能影响较为明显,花状氧化铁有较好的重复利用性;4.合成的花状氧化铁可以应用于大批废水的处理。
花状氧化铁;砷;吸附;亚甲基蓝;光降解

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Barron-Zambrano, J., Szygula, A., Ruiz, M., 2010. Biosorption of reactive black from aqueous solutions by chitosan: column studies. Journal of Environmental Management, 91(12):2669-2675. 


[2] Chang, Q., Lin, W., Ying, W., 2010. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. Journal of Hazardous Materials, 184(1-3):515-522. 


[3] Das, M., Mishra, D., Dhak, P., 2009. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small, 5(24):2883-2893. 


[4] Hu, X.L., Yu, J.C., Gong, J.M., 2007. Fast production of self-assembled hierarchicalr-Fe2O3 nanoarchitectures. The Journal of Physical Chemistry C, 111(30):11180-11185. 


[5] Hu, X.L., Yu, J.C., Gong, J.M., 2007. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials, 19(17):2324-2329. 


[6] Jia, C.J., Sun, L.D., Luo, F., 2008. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. Journal of the American Chemical Society, 130(50):16968-16977. 


[7] Jović-Jovičić, N., Milutinović-Nikolić, A., Banković, P., 2010. Organo-inorganic bentonite for simultaneous adsorption of Acid Orange 10 and lead ions. Applied Clay Science, 47(3-4):452-456. 


[8] Kim, H.S., Piao, Y., Kang, S.H., 2010. Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochemistry Communications, 12(3):382-385. 


[9] Koswojo, R., Utomo, R.P., Ju, Y.H., 2010. Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48(1-2):81-86. 


[10] Li, J.X., Chen, S.Y., Sheng, G.D., 2011. Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chemical Engineering Journal, 166(2):551-558. 


[11] Li, Z.M., Lai, X.Y., Wang, H., 2009. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine. Nanotechnology, 20(24):245603-245613. 


[12] Mohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1-2):1-53. 


[13] Sheng, G.D., Li, Y.M., Yang, X., 2012. Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Advances, 2(32):12400-12407. 


[14] Sivula, K., Zboril, R., Formal, R.L., 2010. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. Journal of the American Chemical Society, 132(21):7436-7444. 


[15] Sun, B., Horvat, J., Kim, H.S., 2010. Synthesis of mesoporousr-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. The Journal of Physical Chemistry C, 114(44):18753-18761. 


[16] Violante, A., Pucci, M., Cozzolino, V., 2009. Sorption/desorption of arsenate on/from Mg-Al layered double hydroxides: influence of phosphate. Journal of Colloid and Interface Science, 333(1):63-70. 


[17] Wang, L.L., Fei, T., Lou, Z., 2011. Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. ACS Applied Materials & Interfaces, 3(12):4689-4694. 


[18] Wu, X.L., Tan, X.L., Yang, S.T., 2013. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Research, 47(12):4159-4168. 


[19] Xu, W.H., Wang, J., Wang, L., 2013. Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface- and structure-dependent properties. Journal of Hazardous Materials, 260:498-507. 


[20] Yang, W.H., Lee, C.F., Tang, H.Y., 2006. Iron oxide nanopropellers prepared by a low-temperature solution approach. The Journal of Physical Chemistry B, 110(29):14087-14091. 


[21] Zermane, F., Bouras, O., Baudu, M., 2010. Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay. Journal of Colloid and Interface Science, 350(1):315-319. 


[22] Zhang, S.W., Xu, W.Q., Zeng, M.Y., 2013. Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 1(38):11691-11697. 


[23] Zhang, S.W., Li, J.X., Zeng, M.Y., 2013.  In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Applied Materials & Interfaces, 5(23):12735-12743. 


[24] Zhang, S.W., Li, J.X., Niu, H.H., 2013. Visible-light photocatalytic degradation of methylene blue using SnO2/α-Fe2O3 hierarchical nanoheterostructures. Chempluschem, 78(2):192-199. 


[25] Zhang, S.W., Zeng, M.Y., Li, J.X., 2014. Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 2(12):4391-4397. 


[26] Zhao, D.L., Sheng, G.D., Chen, C.L., 2012. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Applied Catalysis B: Environmental, 111-112:303-308. 


[27] Zhong, J.Y., Cao, C.B., 2010. Nearly monodisperse hollow Fe2O3 nanoovals: synthesis, magnetic property and applications in photocatalysis and gas sensors. Sensors and Actuators B: Chemical, 145(2):651-656. 


[28] Zhu, H., Jia, Y., Wu, X., 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2-3):1591-1596. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE