Full Text:   <3880>

Summary:  <2179>

CLC number: X52

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-07-18

Cited: 4

Clicked: 10149

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.671-680

http://doi.org/10.1631/jzus.A1400133


Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment*


Author(s):  Kun Xie1, Xiang-xue Wang2, Zheng-jie Liu2, Ahmed Alsaedi3, Tasawar Hayat3, Xiang-ke Wang2,4

Affiliation(s):  1. Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, China; more

Corresponding email(s):   xkwang@ipp.ac.cn

Key Words:  Flower-like &alpha, -Fe2O3 , Arsenate, Sorption, Methylene blue (MB), Photodegradation


Share this article to: More <<< Previous Article|


Abstract: 
The removal of arsenic from aqueous solution is crucial to human health and environmental pollution. Herein, flower-like &alpha;-Fe2O3 nanostructures were synthesized via a template-free microwave-assisted solvothermal technique, and were applied as adsorbents for the removal of arsenic (As(V)) from aqueous solutions. The results indicated that the synthesized flower-like &alpha;-Fe2O3 showed excellent sorption properties and had a maximum sorption capacity of 47.64 mg/g for As(V). Meanwhile, the experimental results of photodegradation of methylene blue (MB) indicated that the as-synthesized flower-like &alpha;-Fe2O3 exhibited very high photocatalytic performance for the photodegradation of MB and that the as-obtained flower-like &alpha;-Fe2O3 nanostructures were suitable materials in wastewater treatment.

References

[1] Barron-Zambrano, J., Szygula, A., Ruiz, M., 2010. Biosorption of reactive black from aqueous solutions by chitosan: column studies. Journal of Environmental Management, 91(12):2669-2675. 


[2] Chang, Q., Lin, W., Ying, W., 2010. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. Journal of Hazardous Materials, 184(1-3):515-522. 


[3] Das, M., Mishra, D., Dhak, P., 2009. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small, 5(24):2883-2893. 


[4] Hu, X.L., Yu, J.C., Gong, J.M., 2007. Fast production of self-assembled hierarchicalr-Fe2O3 nanoarchitectures. The Journal of Physical Chemistry C, 111(30):11180-11185. 


[5] Hu, X.L., Yu, J.C., Gong, J.M., 2007. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials, 19(17):2324-2329. 


[6] Jia, C.J., Sun, L.D., Luo, F., 2008. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. Journal of the American Chemical Society, 130(50):16968-16977. 


[7] Jović-Jovičić, N., Milutinović-Nikolić, A., Banković, P., 2010. Organo-inorganic bentonite for simultaneous adsorption of Acid Orange 10 and lead ions. Applied Clay Science, 47(3-4):452-456. 


[8] Kim, H.S., Piao, Y., Kang, S.H., 2010. Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochemistry Communications, 12(3):382-385. 


[9] Koswojo, R., Utomo, R.P., Ju, Y.H., 2010. Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48(1-2):81-86. 


[10] Li, J.X., Chen, S.Y., Sheng, G.D., 2011. Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chemical Engineering Journal, 166(2):551-558. 


[11] Li, Z.M., Lai, X.Y., Wang, H., 2009. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine. Nanotechnology, 20(24):245603-245613. 


[12] Mohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1-2):1-53. 


[13] Sheng, G.D., Li, Y.M., Yang, X., 2012. Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Advances, 2(32):12400-12407. 


[14] Sivula, K., Zboril, R., Formal, R.L., 2010. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. Journal of the American Chemical Society, 132(21):7436-7444. 


[15] Sun, B., Horvat, J., Kim, H.S., 2010. Synthesis of mesoporousr-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. The Journal of Physical Chemistry C, 114(44):18753-18761. 


[16] Violante, A., Pucci, M., Cozzolino, V., 2009. Sorption/desorption of arsenate on/from Mg-Al layered double hydroxides: influence of phosphate. Journal of Colloid and Interface Science, 333(1):63-70. 


[17] Wang, L.L., Fei, T., Lou, Z., 2011. Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. ACS Applied Materials & Interfaces, 3(12):4689-4694. 


[18] Wu, X.L., Tan, X.L., Yang, S.T., 2013. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Research, 47(12):4159-4168. 


[19] Xu, W.H., Wang, J., Wang, L., 2013. Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface- and structure-dependent properties. Journal of Hazardous Materials, 260:498-507. 


[20] Yang, W.H., Lee, C.F., Tang, H.Y., 2006. Iron oxide nanopropellers prepared by a low-temperature solution approach. The Journal of Physical Chemistry B, 110(29):14087-14091. 


[21] Zermane, F., Bouras, O., Baudu, M., 2010. Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay. Journal of Colloid and Interface Science, 350(1):315-319. 


[22] Zhang, S.W., Xu, W.Q., Zeng, M.Y., 2013. Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 1(38):11691-11697. 


[23] Zhang, S.W., Li, J.X., Zeng, M.Y., 2013.  In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Applied Materials & Interfaces, 5(23):12735-12743. 


[24] Zhang, S.W., Li, J.X., Niu, H.H., 2013. Visible-light photocatalytic degradation of methylene blue using SnO2/α-Fe2O3 hierarchical nanoheterostructures. Chempluschem, 78(2):192-199. 


[25] Zhang, S.W., Zeng, M.Y., Li, J.X., 2014. Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 2(12):4391-4397. 


[26] Zhao, D.L., Sheng, G.D., Chen, C.L., 2012. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Applied Catalysis B: Environmental, 111-112:303-308. 


[27] Zhong, J.Y., Cao, C.B., 2010. Nearly monodisperse hollow Fe2O3 nanoovals: synthesis, magnetic property and applications in photocatalysis and gas sensors. Sensors and Actuators B: Chemical, 145(2):651-656. 


[28] Zhu, H., Jia, Y., Wu, X., 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2-3):1591-1596. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE