Full Text:   <3037>

Summary:  <2346>

CLC number: TH12

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-12-25

Cited: 4

Clicked: 5449

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei WEI

http://orcid.org/0000-0002-0813-5167

Ang LIU

http://orcid.org/0000-0002-6300-5744

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.1 P.1-10

http://doi.org/10.1631/jzus.A1400263


A multi-principle module identification method for product platform design


Author(s):  Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest

Affiliation(s):  School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; more

Corresponding email(s):   weiwei@buaa.edu.cn, angliu@usc.edu

Key Words:  Module identification, Modularization principles, Multi-objective optimization, Improved strength Pareto evolutionary algorithm (ISPEA2), Turbo expander


Share this article to: More |Next Article >>>

Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University Science A, 2015, 16(1): 1-10.

@article{title="A multi-principle module identification method for product platform design",
author="Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest",
journal="Journal of Zhejiang University Science A",
volume="16",
number="1",
pages="1-10",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400263"
}

%0 Journal Article
%T A multi-principle module identification method for product platform design
%A Wei Wei
%A Ang Liu
%A Stephen C. Y. Lu
%A Thorsten Wuest
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 1
%P 1-10
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400263

TY - JOUR
T1 - A multi-principle module identification method for product platform design
A1 - Wei Wei
A1 - Ang Liu
A1 - Stephen C. Y. Lu
A1 - Thorsten Wuest
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 1
SP - 1
EP - 10
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400263


Abstract: 
In today’s competitive global business environment, platform strategy presents an opportunity for manufacturing companies to juggle increased customer demand for customized products and the inherited complexity and increased development cost that comes with it. The goal of this paper is to support module identification as an essential part of a module-based platform strategy approach. Based on various existing methods, this paper abstracted three principles, which include an internal clustering principle, an external independence principle, and an overall stability principle. The three principles should be holistically considered, and be simultaneously satisfied during the module identification. Both conceptual and mathematical modeling of the proposed multi-principle module identification method are elaborated. Then an improved strength Pareto evolutionary algorithm (ISPEA2) is used to address the multi-principle module identification problem and find the Pareto-optimal set. A fuzzy compromise selection method base on fuzzy set theory is also used to select the best compromise Pareto solution. An industrial case study in a turbo expander manufacturing company is provided to illustrate practical applications of the research. Finally, the result obtained by the proposed approach is compared with other established optimization approaches.

支持产品平台设计的多准则模块划分方法

目的:研究多准则约束下的产品模块划分方法,为企业建立稳健的模块化产品平台奠定基础。
方法:采用改进的多目标进化算法对建立的多准则模块划分数学模型求解,并采用模糊集合评价机制进行最优解的寻取,得到基于多准则模块划分方法的产品模块划分结果。
结论:通过改进的多目标进化算法求解多准则模块划分模型,能够得到有效支持产品平台设计的产品模块划分方案。通过与已有优化方法的比较验证了本文提出的多准则模块划分方法的优越性。

关键词:块划分;模块化准则;多目标优化; 改进的强度帕累托进化算法;透平膨胀机

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abido, M.A., 2006. Multi-objective evolutionary algorithms for electric power dispatch problem. IEEE Transactions on Evolutionary Computation, 10(3):315-329.

[2]Cheng, J., Liu, Z.Y., Tan, J.R., 2013. Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. The International Journal of Advanced Manufacturing Technology, 66(5-8):907-916.

[3]Deb, K., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197.

[4]Feng, Y.X., Zheng, B., Li, Z.K., 2010. Exploratory study of sorting particle swarm optimizer for multiobjective design optimization. Mathematical and Computer Modeling, 52(11-12):1966-1975.

[5]Gao, Y.C., Feng, Y.X., Tan, J.R., 2014. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(11):862-872.

[6]Holtta-Otto, K., de Weck, O., 2007. Degree of modularity in engineering systems and products with technical and business constraints. Concurrent Engineering, 15(2):113-126.

[7]Horn, J., Nafpliotis, N., 1994. A niched Pareto genetic algorithm for multiobjective optimization. Proc. First IEEE Conference on Evolutionary Computation, Saudi Arabia, p.97-105.

[8]Huang, H.H., Liu, Z.F., Wang, S.W., et al., 2006. Research on methodology of modular design for recycling. Transactions of the Chinese Society for Agricultural Machinery, 37(12):144-149 (in Chinese).

[9]Ji, Y.J., Chen, X.B., Qi, G.N., 2013. Modular design involving effectiveness of multiple phases for product life cycle. The International Journal of Advanced Manufacturing Technology, 66(9-12):1475-1488.

[10]Jiao, J.R., Simpson, T.W., Siddique, Z., 2007. Product family design and platform-based product development: a state-of-the-art review. Journal of Intelligent Manufacturing, 18(1):5-29.

[11]Kim, M., Hiroyasu, T., Miki, M., et al., 2004. SPEA2+: improving the performance of the strength Pareto evolutionary algorithm 2. In: Yao, X., Burke, E.K., Lozano, J.A., et al. (Eds.), Parallel Problem Solving from Nature-PPSN VIII. Springer Berlin Heidelberg, LNCS 3242:742-751.

[12]Kimura, F., Kato, S., Hata, T.M., et al., 2001. Product modularization for parts reuse in inverse manufacturing. CIRP Annals-Manufacturing Technology, 50(1):89-92.

[13]Kreng, V.B., Lee, T.P., 2003. Product family design with grouping genetic algorithm—a case study. Journal of the Chinese Institute of Industrial Engineers, 20(4):373-388.

[14]Li, Z.K., Feng, Y.X., Tan, J.R., 2008. A methodology to support product platform optimization using multi-objective evolutionary algorithms. Transactions of the Institute of Measurement and Control, 30(3-4):295-312.

[15]Li, Z.K., Cheng, Z.H., Feng, Y.X., 2013. An integrated method for flexible platform modular architecture design. Journal of Engineering Design, 24(1):25-44 (in Chinese).

[16]Martínez-Morales, J.D., Palacios-Hernández, E.R., Velázquez-Carrillo, G.A., et al., 2013. Velázquez-Carrillo modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(9):657-670.

[17]Meng, X.H., Jiang, Z.H., 2006. The module planning for product family designing. Journal of Shanghai Jiaotong University, 40(11):1871-1876 (in Chinese).

[18]Mitra, K., Gopinath, R., 2004. Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm. Chemical Engineering Science, 59(2):385-396.

[19]Newcomb, P.J., Bras, B., Rosen, D.W., 1996. Implications of modularity on product design for the life cycle. ASME Design Engineering Technical Conferences, DETC96/ DTM-1516, Irvine, CA.

[20]Rao, S.S., 1991. Optimization Theory and Application. Wiley Eastern Ltd., New Delhi.

[21]Saaty, T.L., 1988. What is the Analytic Hierarchy Process? Springer Berlin Heidelberg, p.109-121.

[22]Sanchez, R., 1993. Strategic flexibility, firm organization, and managerial work in dynamic markets: a strategic options perspective. Advances in Strategic Management, 9(1):251-291.

[23]Simpson, T.W., 2004. Product platform design and customization: status and promise. AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 18(01):3-20.

[24]Sosa, M.E., Eppinger, S.D., Rowles, C.M., 2004. The misalignment of product architecture and organizational structure in complex product development. Management Science, 50(12):1674-1689.

[25]Srivans, N., Deb, K., 1995. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3):221-248.

[26]Su, S., Yu, H.J., Wu, Z.H., et al., 2014. A distributed coevolutionary algorithm for multiobjective hybrid flowshop scheduling problems. The International Journal of Advanced Manufacturing Technology, 70(1-4):477-494.

[27]Szymanski, D.M., Henard, D.H., 2001. Customer satisfaction: a meta-analysis of the empirical evidence. Journal of the Academy of Marketing Science, 29(1):16-35.

[28]Tseng, H.W., Chang, C.C., Li, J.D., 2008. Modular design to support green life-cycle engineering. Expert Systems with Applications, 34(4):2524-2537.

[29]Ulrich, K., 1994. Fundamentals of Product Modularity. Springer Netherlands, p.219-231.

[30]Ulrich, K., 1995. The role of product architecture in the manufacturing firm. Research Policy, 24(3):419-440.

[31]Umeda, Y., Fukushige, S., Tonoike, K., et al., 2008. Product modularity for life cycle design. CIRP Annals-Manufacturing Technology, 57(1):13-16.

[32]Wang, H.J., Wei, X.P., 2005. Numerical programming approaches for the development of modular product family. Journal of Computer Aided Design & Computer Graphics, 17(3):473-478 (in Chinese).

[33]Wang, H.J., Sun, B.Y., Zhang, Q., et al., 2006. Variant configuration design supporting personalization product customization. Chinese Journal of Mechanical Engineering, 42(1):90-97 (in Chinese).

[34]Yu, S., Yang, Q., Tao, J., et al., 2011. Product modular design incorporating life cycle issues—group genetic algorithm (GGA) based method. Journal of Cleaner Production, 19(9-10):1016-1032.

[35]Zitzler, E., Thiele, L., 1998. An evolutionary algorithm for multiobjective optimization: the strength Pareto approach. TIK-Report 43, Swiss Federal Institute of Technology, Zurich, Switzerland.

[36]Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103, Swiss Federal Institute of Technology, Zurich, Switzerland.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE