Full Text:   <2630>

Summary:  <2168>

CLC number: TU312.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-07-09

Cited: 3

Clicked: 5239

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yue Wu

http://orcid.org/0000-0003-4097-9439

Zhao-qing Chen

http://orcid.org/0000-0001-9168-1478

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.8 P.656-668

http://doi.org/10.1631/jzus.A1400340


Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models


Author(s):  Yue Wu, Zhao-qing Chen, Xiao-ying Sun

Affiliation(s):  1Key Laboratory of Structures Dynamic Behavior and Control of Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; more

Corresponding email(s):   chenzhq2004@163.com

Key Words:  Membrane structures, Wind-induced response, Aero-elastic instability, Aero-elastic model, Vortex-induced vibration


Yue Wu, Zhao-qing Chen, Xiao-ying Sun. Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models[J]. Journal of Zhejiang University Science A, 2015, 16(8): 656-668.

@article{title="Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models",
author="Yue Wu, Zhao-qing Chen, Xiao-ying Sun",
journal="Journal of Zhejiang University Science A",
volume="16",
number="8",
pages="656-668",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400340"
}

%0 Journal Article
%T Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models
%A Yue Wu
%A Zhao-qing Chen
%A Xiao-ying Sun
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 8
%P 656-668
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400340

TY - JOUR
T1 - Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models
A1 - Yue Wu
A1 - Zhao-qing Chen
A1 - Xiao-ying Sun
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 8
SP - 656
EP - 668
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400340


Abstract: 
The aero-elastic instability mechanism of a tensioned membrane structure is studied in this paper. The response and wind velocities above two closed-type saddle-shaped tensioned membrane structures, with the same shape but different pre-tension levels, were measured in uniform flow and analyzed. The results indicate that, for most wind directions, several vibration modes are excited and the amplitude and damping ratio of the roof slowly increase with the on-coming flow velocity. However, for particular wind directions, only one vibration mode is excited, and the amplitude and damping ratio of the vibration mode increase slowly with the on-coming flow velocity. The aero-elastic instability is caused by vortex-induced resonance. On exceeding a certain wind speed, the amplitude of the roof vibration increases sharply and the damping ratio of the vibration mode decreases quickly to near zero; the frequency of the vortex above the roof is locked in by the vibration within a certain wind velocity range; the amplitudes of the roof in these wind directions reach 2–4 times the amplitudes for other wind directions. The reduced critical wind speeds for the aero-elastic instability of saddle-shaped membrane structures at the first two modes are around 0.8–1.0.

The paper addresses a relevant topic and describes an interesting study.

封闭式鞍形张拉膜模型风致气弹响应研究

目的:明确张拉膜结构风致气弹响应特征及气弹失稳机理。
创新点:1. 采用无接触测量技术设计鞍形张拉膜结构气弹模型风洞试验;2. 研究鞍形张拉膜结构的气弹响应特征;3. 给出鞍形张拉膜结构的失稳 机理。
方法:1. 在风洞中测量两个形状相同但预张力不同的封闭式鞍形张拉膜结构气弹模型在不同风速下的均匀流中的位移响应及膜面上方不同高度的风速时程;2. 通过对位移响应及风速时程进行分析,明确结构的响应随风速变化特征及气弹失稳原因。
结论:1. 膜结构在风荷载作用下变形到平衡位置,并围绕该平衡位置以特定振幅进行振动; 2. 大部分风向角下,多个模态被激发,结构振幅及各阶模态阻尼比随风速增大而逐渐增大; 3. 特定风向角下,只有单阶模态被激发;低风速下,结构振幅和模态阻尼比随风速增大而缓慢增大;超过一定风速后,结构发生涡激共振引起的气弹失稳,振幅随风速增大开始迅速增大,达到不发生涡激共振时的2-4倍,结构阻尼比随风速增大发生迅速衰减;随着风速的继续增大,结构振动中可能出现其他模态的气弹失稳;4. 结构前两阶模态的无量纲气弹失稳临界风速约为0.8-1.0。

关键词:膜结构;风致响应;气弹失稳;气弹模型;涡激共振

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cermak, J.E., 2003. Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering and Industrial Aerodynamics, 91(3):355-370.

[2]Haruo, K., 1975. Flutter of hanging roofs and curved membrane roofs. International Journal of Solids and Structures, 11(4):477-492.

[3]Jenkins, C.H.M., Korde, U.A., 2006. Membrane vibration experiments: an historical review and recent results. Journal of Sound and Vibration, 295(3-5):602-613.

[4]Kareem, A., Gurley, K., 1996. Damping in structures: its evaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics, 59(2-3):131-157.

[5]Kawamura, S., Kimoto, E., 1979. Aerodynamic stability criteria of one-way types of hanging roofs in smooth uniform flow. Proceedings of 5th International Conference on Wind Engineering, Colorado, USA, p.939-948.

[6]Kim, J.Y., Yu, E., Kim, D.Y., et al., 2011. Long-term monitoring of wind-induced response of a large-span roof structure. Journal of Wind Engineering and Industrial Aerodynamics, 99(9):955-963.

[7]Kimoto, E., Kawamura, S., 1983. Aerodynamic behavior of one-way type hanging roof. Journal of Wind Engineering and Industrial Aerodynamics, 13(1-3):395-405.

[8]Li, Y.Q., Wang, L., Tamura, Y., et al., 2009. Wind tunnel test on levy type cable dome. Proceeding of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, China.

[9]Li, Y.Q., Wang, L., Shen, Z.Y., et al., 2011. Added-mass estimation of flat membranes vibrating in still air. Journal of Wind Engineering and Industrial Aerodynamics, 99(8):815-824.

[10]Li, Y.Q., Wang, L., Shen, Z.Y., et al., 2012. Wind-induced vibration of a circular membrane considering added mass effect based on wind tunnel tests. Proceeding of IASS-APCS 2012 from Spatial Structures to Space Structures, Seoul, Korea.

[11]Marukawa, H., Kato, N., Fujii, K., et al., 1996. Experimental evaluation of aerodynamic damping of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 59(2-3):177-190.

[12]Matsumoto, T., 1990. Self-excited oscillation of a pretensioned cable roof with single curvature in smooth flow. Journal of Wind Engineering and Industrial Aerodynamics, 34(3):303-318.

[13]Michalski, A., Kermel, P.D., Haug, E., et al., 2011. Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):400-411.

[14]Minami, H., Okuda, Y., Kawamura, S., 1993. Experimental studies on the flutter behavior of membranes in a wind tunnel. Proceedings of 4th International Conference on Space Structures, London, UK, p.935-945.

[15]Miyake, A., Yoshimura, T., Makin, M., 1992. Aerodynamic instability of suspended roof models. Journal of Wind Engineering and Industrial Aerodynamics, 42(1-3):1471-1482.

[16]Peng, Z.K., Tse, P.W., Chu, F.L., 2005. An improved Hilbert-Huang transform and its application in vibration signal analysis. Journal of Sound and Vibration, 286(1-2):187-205.

[17]Rojratsirikul, P., Wang, Z., Gursul, I., 2010. Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils. Journal of Fluids and Structures, 26(3):359-376.

[18]Sygulski, R., 2007. Stability of membrane in low subsonic flow. International Journal of Non-Linear Mechanics, 42(1):196-202.

[19]Takeuchi, M., Maeda, J., Ishida, N., 2010. Aerodynamic damping properties of two transmission towers estimated by combining several identification methods. Journal of Wind Engineering and Industrial Aerodynamics, 98(12):872-880.

[20]Tryggvason, B.V., 1979. Aeroelastic modeling of pneumatic and tensioned fabric structures. Proceedings of 5th International Conference on Wind Engineering, Colorado, USA, p.1061-1072.

[21]Uematsu, Y., Uchiyama, K., 1982. Wind-induced Dynamic Behavior of Suspended Roofs. Technology Report, Tohoku University, Japan.

[22]Uematsu, Y., Uchiyama, K., 1985. An experimental investigation of wind-induced ovalling oscillations of thin, circular cylindrical shell. Journal of Wind Engineering and Industrial Aerodynamics, 18(3):229-243.

[23]Uematsu, Y., Uchiyama, K., 1986. Aeroelastic behavior of an HP shaped suspended roof. Proceedings of IASS Symposium on Shells, Membrane and Space Frames, Osaka, Japan, p.241-248.

[24]Uematsu, Y., Tsujiguchi, N., Yamada, M., 2001. Mechanism of ovalling vibrations of cylindrical shells in cross flow. Wind and Structures, 4(2):85-100.

[25]Wu, Y., Sun, X.Y., Shen, S.Z., 2008. Computation of wind–structure interaction on tension structures. Journal of Wind Engineering and Industrial Aerodynamics, 96(10-11):2019-2032.

[26]Yang, Q.S., Liu, R.X., 2005. On aerodynamic stability of membrane structures. International Journal of Space Structures, 20(3):181-188.

[27]Yang, Q.S., Wu, Y., Zhu, W.L., 2010. Experimental study on interaction between membrane structures and wind environment. Earthquake Engineering and Engineering Vibration, 9(4):523-532.

[28]Zhang, Z.H., Tamura, Y., 2007. Wind tunnel test on cable dome of Geiger type. Journal of Computational and Nonlinear Dynamics, 2(3):218-224.

[29]Zhou, Y., Li, Y.Q., Shen, Z.Y., et al., 2014. Numerical analysis of added mass for open flat membrane vibrating in still air using the boundary element method. Journal of Wind Engineering and Industrial Aerodynamics, 131: 100-111.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE