Full Text:   <3357>

Summary:  <2703>

CLC number: P457.6

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-12-26

Cited: 0

Clicked: 6000

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ming-xiang YANG

http://orcid.org/0000-0002-6085-6762

Yun-zhong JIANG

http://orcid.org/0000-0002-9918-2670

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.1 P.18-37

http://doi.org/10.1631/jzus.A1400347


A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin


Author(s):  Ming-xiang Yang, Yun-zhong Jiang, Xing Lu, Hong-li Zhao, Yun-tao Ye, Yu Tian

Affiliation(s):  Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   yangmx12@mails.tsinghua.edu.cn, larkking@sina.com

Key Words:  Weather research and forecasting (WRF) model, Yalong River Basin, Heavy precipitation, Precipitation simulation, Precipitation verification, Cumulus parameterization scheme, Microphysics scheme


Ming-xiang Yang, Yun-zhong Jiang, Xing Lu, Hong-li Zhao, Yun-tao Ye, Yu Tian. A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin[J]. Journal of Zhejiang University Science A, 2015, 16(1): 18-37.

@article{title="A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin",
author="Ming-xiang Yang, Yun-zhong Jiang, Xing Lu, Hong-li Zhao, Yun-tao Ye, Yu Tian",
journal="Journal of Zhejiang University Science A",
volume="16",
number="1",
pages="18-37",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400347"
}

%0 Journal Article
%T A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin
%A Ming-xiang Yang
%A Yun-zhong Jiang
%A Xing Lu
%A Hong-li Zhao
%A Yun-tao Ye
%A Yu Tian
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 1
%P 18-37
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400347

TY - JOUR
T1 - A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin
A1 - Ming-xiang Yang
A1 - Yun-zhong Jiang
A1 - Xing Lu
A1 - Hong-li Zhao
A1 - Yun-tao Ye
A1 - Yu Tian
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 1
SP - 18
EP - 37
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400347


Abstract: 
The forecasting capability of the weather research and forecasting (WRF) model for heavy precipitation in the downstream area of the yalong River Basin in Southwest China was evaluated for the first time through the simulation of three heavy precipitation events with seven commonly used microphysics parameterization schemes (MPS) (Kessler, Lin et al. (Lin), Single-Moment 3-class (WSM3), Single-Moment 5-class (WSM5), Ferrier, Single-Moment 6-class (WSM6), and New Thompson et al. (NTH)) and three cumulus parameterization schemes (CPS) (Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ), and Grell-Devenyi (GD)). Of the three rainfall events, the first two are typical large-area heavy precipitation events in the yalong River Basin and consist of several continuous storms. The third one is a heavy precipitation event with only one storm. In this study, a triple nested domain with a 3-km grid resolution inner-most domain over the study area was configured for the WRF model. We employed the probability of detection (POD), false alarm ratio (FAR), BIAS, and equitable threat (ET) scores to compare the spatial distribution of heavy rainfall created by the WRF model with the observations from the gauges in the downstream area of the river basin. The root mean squared errors (RMSEs) at each sub river basin and the whole downstream of yalong River Basin were also calculated for the evaluation. In addition, it is important to include the computation efficiency when choosing a scheme combination. We recorded the time consumption for each model simulation and made comparisons for selecting the optimum scheme with less time consumption and acceptable prediction accuracy. Through comprehensive comparison, the scheme combination of WSM3 and GD holds a stable performance in leveraging the prediction accuracy and computation efficiency for the heavy precipitation events.

天气预报模式对雅砻江下游强降水预报能力检验研究

目的:检验数值天气预报模式(WRF)在雅砻江下游对强降水的预报能力,并找出表现最优的参数化方案组合。
创新点:首次针对雅砻江流域检验WRF模式对强降水的预报能力,并加入了计算时间作为评价的重要参考。
方法:通过三场强降水事件,利用七种常用的云微物理参数化方案(Kessler,Lin et al. (Lin),Single- Moment 3-class (WSM3),Single-Moment 5-class (WSM5),Ferrier,Single-Moment 6-class (WSM6),和 New Thompson et al. (NTH))和3种积云对流参数化方案(Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ)和Grell-Devenyi (GD))的组合,对WRF模式在雅砻江下游的降水预报能力进行检验。为了评价WRF模式的预报能力,引入探测率(POD),空报率(FAR),BIAS和公平预报评分(ETS),对比不同方案组合的降水空间分布和站点预报的有效性。同时,均方根误差(RMSE)等指标被用来评价面雨量预报的精确性。除常规评价外,还将计算时间作为方案评价的重要参考,在满足精度需求的前提下优先选择计算效率高的方案组合。
结论:1. WRF模式能够适用于雅砻江下游强降水预报;2. WSM3以及GD参数化方案组合的表现最为有效和稳定。

关键词:RF模式;雅砻江流域;降水模拟;积云对流参数化方案;云微物理参数化方案

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alam, M.M., 2014. Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7-9 October 2007 over Bangladesh. Journal of Earth System Science, 123(2):259-279.

[2]Benedetti, A., Lopez, P., Moreau, E., et al., 2005. Verification of TMI-adjusted rainfall analyses of tropical cyclones at ECMWF using TRMM precipitation radar. Journal of Applied Meteorology, 44(11):1677-1690.

[3]Betts, A.K., Miller, M.J., 1986. A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 112(473):693-709.

[4]Chandrasekar, R., Balaji, C., 2012. Sensitivity of tropical cyclone Jal simulations to physics parameterizations. Journal of Earth System Science, 121(4):923-946.

[5]Cossu, F., Hocke, K., 2013. Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model. Geoscientific Model Development Discussions, 6(3):4563-4601.

[6]Cressman, G.P., 1959. An operational objective analysis system. Monthly Weather Review, 87(10):367-374.

[7]Dodla, V.B.R., Ratna, S.B., 2010. Mesoscale characteristic and prediction of an unusual extreme heavy precipitation event over India using a high resolution mesoscale model. Atmospheric Research, 95:255-269.

[8]Dodla, V.B.R., Desamsetti, S., 2014. Multi-physics ensemble prediction of tropical cyclone movement over Bay of Bengal. Natural Hazards, 70(1):883-902.

[9]Done, J., Davis, C.A., Weisman, M., 2004. The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmospheric Science Letter, 5(6):110-117.

[10]Evans, J.P., Ekström, M., Ji, F., 2012. Evaluating the performance of a WRF physics ensemble over South-East Australia. Climate Dynamics, 39(6):1241-1258.

[11]Ferrier, B.S., Jin, Y., Lin, Y., et al., 2002. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. 19th Conf. on Weather Analysis and Forecasting 15th Conf. on Numerical Weather Prediction, San Antonio. American Meteorological Society, USA, p.280-283.

[12]Fiori, E., Parodi, A., Siccardi, F., 2011. Uncertainty in prediction of deep moist convective progresses: turbulence parameterizations, microphysics and grid-scale effects. Atmospheric Research, 100(4):447-456.

[13]Fritsch, J.M., Chappell, C.F., 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. Journal of the Atmospheric Sciences, 37(8):1722-1733.

[14]Grell, G.A., Devenyi, D., 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14):1693-1696.

[15]Hong, S.Y., Lim, J.O.J., 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Korean Meteorological Social, 42(2):129-151.

[16]Hong, S.Y., Lee, J.W., 2009. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmospheric Research, 93(4):818-831.

[17]Hong, S.Y., Dudhia, J., Chen, S.H., 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132(1):103-120.

[18]Jasper, K., Kaufmann, P., 2003. Coupled runoff simulations as validation tools for atmospheric models at the regional scale. Quarterly Journal of The Royal Meteorological Society, 129(588):673-693.

[19]Jia, R.X., Hou, X.L., Liu, Y., 2004. Hydropower exploitation in Sichuan province. Resources and Environment in the Yangtze Basin, 13(5):438-443 (in Chinese).

[20]Kain, J.S., 2004. The Kain-Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1):170-181.

[21]Kain, J.S., Fritsch, J.M., 1990. A one-dimensional entraining/ detraining plume model and its application in convection parameterization. Journal of the Atmospheric Sciences, 47(23):2784-2802.

[22]Kerkhoven, E., Gan, T.Y., Shiiba, M., et al., 2006. A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrological Processes, 20(9):1961-1978.

[23]Kessler, E., 1995. On the continuity and distribution of water substance in atmospheric circulations. Atmospheric Research, 38(1-4):109-145.

[24]Lin, Y.L., Farley, R.D., Orville, H.D., 1983. Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6):1065-1092.

[25]Litta, A.J., Mahanty, U.C., Das, S., et al., 2012. Numerical simulation of severe local storms over east India using WRF-NMM mesoscale model. Atmospheric Research, 116:161-184.

[26]Mastrangelo, D., Horvath, K., Riccio, A., et al., 2011. Mechanisms for convection development in a long-lasting heavy precipitation event over southeastern Italy. Atmospheric Research, 100(4):586-602.

[27]Michalakes, J., Dudhia, J., Gill, D., et al., 1999. Design of a next-generation regional weather research and forecast model. Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology. Towards Teracomputing, Reading, UK. World Scientific Publishing, Singapore, p.117-124.

[28]Milbrandt, J.A., Yau, M.K., 2001. A mesoscale modeling study of the 1996 Saguenay Flood. Monthly Weather Review, 129(6):1419-1440.

[29]Peng, Y., Wang, G.L., Tang, G.L., 2011. Study on reservoir operation optimization of Ertan Hydropower station considering GFS forecasted precipitation. Science China-Technological Sciences, 54(S1):76-82.

[30]Pennelly, C., Reuter, G., Flesch, T., 2014. Verification of the WRF model for simulating heavy precipitation in Alberta. Atmospheric Research, 135-136:172-192.

[31]Schaefer, J.T., 1990. The critical success index as an indicator of warning skill. Weather and Forecasting, 5(4):570-575.

[32]Shamim, M.A., Remesan, R., Han, D.W., et al., 2012. An improved technique for global daily sunshine duration estimation using satellite imagery. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(9):717-722.

[33]Skamarock, W.C., Klemp, J.B., Dudhia, J., et al., 2008. A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475 + STR.

[34]Thompson, G., Rasmussen, R.M., Manning, K., 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Monthly Weather Review, 132(2):519-542.

[35]Tustison, B., Harris, D., Foufoula-Georgiou, E., 2001. Scale issues in verification of precipitation forecasts. Journal of Geophysical Research: Atmospheres, 106(D11):11775-11784.

[36]Wang, H.J., Yu, E.T., Yang, S., 2011. An exceptionally heavy snowfall in Northeast China: large-scale circulation anomalies and hindcast of NCAR WRF model. Meteorology and Atmospheric Physics, 113(1-2):11-25.

[37]Wang, W., Seaman, N.L., 1997. A comparison study of convective parameterization schemes in a mesoscale model. Monthly Weather Review, 125(2):252-278.

[38]Wicker, L.J., Wilhelmson, R.B., 1995. Simulation and analysis of tornado development and decay within a three-dimensional supercell thunder storm. Journal of the Atmospheric Sciences, 52(15):2675-2703.

[39]Zangl, G., 2007. Interaction between dynamics and cloud microphysics in orographic precipitation enhancement: a high-resolution modeling study of two north alpine heavy precipitation events. Monthly Weather Review, 135(8):2817-2840.

[40]Zhou, H.C., Zhang, Y., Tang, G.L., 2009. Study on medium and long term runoff forecasting for Ertan hydropower station. Water Resources and Power, 27(1):5-9 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE