Full Text:   <3419>

Summary:  <2029>

CLC number: U25

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-04-11

Cited: 0

Clicked: 6771

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi-hua Zhang

https://orcid.org/0000-0003-1583-9311

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.5 P.346-366

http://doi.org/10.1631/jzus.A1700002


Discrete element analysis of a cross-river tunnel under random vibration levels induced by trains operating during the flood season


Author(s):  Zhi-hua Zhang, Xie-dong Zhang, Yao Tang, Yi-fei Cui

Affiliation(s):  School of Transportation, Wuhan University of Technology, Wuhan 430063, China; more

Corresponding email(s):   zzh@whut.edu.cn

Key Words:  Discrete element method (DEM), Cross-river tunnel, Water pressure, Metro train operation, Random vibration level, Acceleration


Zhi-hua Zhang, Xie-dong Zhang, Yao Tang, Yi-fei Cui. Discrete element analysis of a cross-river tunnel under random vibration levels induced by trains operating during the flood season[J]. Journal of Zhejiang University Science A, 2018, 19(5): 346-366.

@article{title="Discrete element analysis of a cross-river tunnel under random vibration levels induced by trains operating during the flood season",
author="Zhi-hua Zhang, Xie-dong Zhang, Yao Tang, Yi-fei Cui",
journal="Journal of Zhejiang University Science A",
volume="19",
number="5",
pages="346-366",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700002"
}

%0 Journal Article
%T Discrete element analysis of a cross-river tunnel under random vibration levels induced by trains operating during the flood season
%A Zhi-hua Zhang
%A Xie-dong Zhang
%A Yao Tang
%A Yi-fei Cui
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 5
%P 346-366
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700002

TY - JOUR
T1 - Discrete element analysis of a cross-river tunnel under random vibration levels induced by trains operating during the flood season
A1 - Zhi-hua Zhang
A1 - Xie-dong Zhang
A1 - Yao Tang
A1 - Yi-fei Cui
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 5
SP - 346
EP - 366
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700002


Abstract: 
Floods result in many problems, which may include damage to cross-river tunnels. The cross-river tunnel, as a new style of transportation, deserves a large amount of attention. In this paper, a large-scale cross-river tunnel model is proposed based on discrete element method (DEM). Micro parameters used in the model are calibrated by proposing a triaxial numerical model. Different in situ strata, high water pressures of normal flood-water levels and random vibration levels induced by running trains are taken into account to evaluate the dynamic characteristics of a high-stress tunnel in deformation and stress analysis. The results show that the upper half of the tunnel, including the concrete lining and the surroundings, is at higher risk than the lower half. Vibration waves transferring into the surroundings undergo an amplification process. The particles of the surroundings at the vault of the tunnel separate and move downward and then reassemble during the dynamic vibrations. The vibration levels, represented by particle accelerations, are lower under flood conditions than those under normal conditions. As train speed increases, the acceleration of the track and particles in the foundation increases, accompanied by a decrease in deformation.

This paper considers the problematic issues in railway engineering, namely, to evaluate the structure damage induced by vibrations during train passing. The paper is timely and clearly written, and includes valuable analysis of measured data and model predictions. The model development is comprehensive, and the results are presented clearly with a detailed commentary. The conclusions are clear and a valuable contribution to the subject.

汛期地铁行车荷载作用下越江隧道离散元分析

目的:揭示汛期及常水位条件下地铁随机振动荷载作用下越江隧道管片及周边岩土体的动力响应及变形机制。
创新点:建立越江地铁隧道二维离散元模型,并采用随机振动荷载模拟地铁行车荷载,揭示汛期和常水位条件下地铁行车荷载对越江隧道稳定性的影响。
方法:采用离散元方法进行数值仿真。1. 基于室内三轴试验和离散元数值拟合得到土层的各细观参数;2. 采用不同接触模型对隧道内钢轨、轨枕、管片以及周边岩土体进行建模;3. 将地铁随机振动荷载施加在钢轨上,对管片及周边岩土体不同区域内颗粒的受力及变形进行监测并分析。
结论:1. 位于隧道上半部分的周边岩土体颗粒振动偏大;2. 随着距离的增大,振动波在周边岩土体内先放大后减小;3. 汛期水位条件下地铁行车荷载对管片和周边岩土体的振动影响较小,但是对隧道变形影响较大。

关键词:离散元方法;越江地铁隧道;水压力;地铁行车荷载

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abul-Husn NS, Sutak M, Milne B, et al., 2013. Measurement of building foundation and groundborne vibrations due to surface trains and subways. Engineering Structures, 53(1):5-14.

[2]Aldea CM, Shah SP, Karr A, 1999. Permeability of cracked concrete. Materials and Structures, 32(5):370-376.

[3]Bian XC, Chao C, Jin WF, et al., 2011. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(12):885-894.

[4]Bian XC, Jin WF, Jiang HG, 2012. Ground-borne vibrations due to dynamic loadings from moving trains in subway tunnels. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(11):870-876.

[5]Chang CT, Sun CW, Duan SW, et al., 2001. Response of a Taipei rapid transit system (TRTS) tunnel to adjacent excavation. Tunnelling & Underground Space Technology, 16(3):151-158.

[6]Colaço A, Costa PA, Connolly DP, 2015. The influence of train properties on railway ground vibrations. Structure & Infrastructure Engineering, 12(5):1-18.

[7]Connolly DP, Kouroussis G, Laghrouche O, et al., 2015a. Benchmarking railway vibrations–track, vehicle, ground and building effects. Construction & Building Materials, 92:64-81.

[8]Connolly DP, Costa PA, Kouroussis G, et al., 2015b. Large scale international testing of railway ground vibrations across Europe. Soil Dynamics & Earthquake Engineering, 71:1-12.

[9]Cui Y, Nouri A, Chan D, et al., 2016. A new approach to DEM simulation of sand production. Journal of Petroleum Science & Engineering, 147:56-67.

[10]Ding DY, Gupta S, Liu WN, et al., 2010. Prediction of vibrations induced by trains on line 8 of Beijing metro. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(4):280-293.

[11]Dinis Ferreira PA, 2010. Modeling and Prediction of the Dynamic Behavior of Railway Infrastructures at Very High Speeds. PhD Thesis, Technical University of Lisbon, Lisbon, Portugal.

[12]Fryba L, 1999. Vibration of Solids and Structures under Moving Loads, 3rd Edition. Thomas Telford, London, UK.

[13]Gao WL, Yang MS, Zhao BM, 2012. Seismic response analysis of large span tunnel across the river under earthquake. Highway, 5:344-349 (in Chinese).

[14]Gu X, Lu L, Qian J, 2017. Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils. Particuology, 32:21-29.

[15]Itasca (Itasca Consulting Group, Inc.), 2008. PFC Particle FOW Code, Version 4.0. Itasca, Minneapolis, USA.

[16]Ji F, Lu J, Shi Y, et al., 2013. Mechanical response of surrounding rock of tunnels constructed with the TBM and drill-blasting method. Natural Hazards, 66(2):545-556.

[17]Kouroussis G, 2013. Experimental study of ground vibrations induced by Brussels IC/IR trains in their neighbourhood. Mechanics & Industry, 14(2):99-105.

[18]Kouroussis G, Conti C, Verlinden O, 2012. Efficiency of resilient wheels on the alleviation of railway ground vibrations. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226(4):381-396.

[19]Kouroussis G, Connolly DP, Verlinden O, 2014. Railway-induced ground vibrations–a review of vehicle effects. International Journal of Rail Transportation, 2(2):69-110.

[20]Ling XZ, Chen SJ, Zhu ZY, et al., 2010. Field monitoring on the train-induced vibration response of track structure in the Beiluhe permafrost region along Qinghai-Tibet railway in China. Cold Regions Science & Technology, 60(1):75-83.

[21]Liu Z, Koyi H, 2013. Kinematics and internal deformation of granular slopes: insights from discrete element modeling. Landslides, 10(2):139-160.

[22]Lu JF, Zhang CW, Jian P, 2017. Meso-structure parameters of discrete element method of sand pebble surrounding rock particles in different dense degrees. Proceedings of the 7th International Conference on Discrete Element Methods, p.871-879.

[23]Min FL, Zhu W, Han XR, et al., 2010. The effect of clay content on filter cake formation in highly permeable gravel. Geoshanghai International Conference, 204:210-215.

[24]Min FL, Zhu W, Lin C, et al., 2015. Opening the excavation chamber of the large-diameter size slurry shield: a case study in Nanjing Yangtze River Tunnel in China. Tunnelling and Underground Space Technology, 46:18-27.

[25]Nielsen J, Lundén R, Johansson A, et al., 2003. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces. Vehicle System Dynamics, 40(1-3):3-54.

[26]Picandet V, Khelidj A, Bellegou H, 2009. Crack effects on gas and water permeability of concretes. Cement & Concrete Research, 39(6):537-547.

[27]Potyondy DO, Cundall PA, 2004. A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 41(8):1329-1364.

[28]Ricci L, Nguyen VH, Sab K, et al., 2005. Dynamic behavior of ballasted railway tracks: a discrete/continuous approach. Computers and Structures, 83(28-30):2282-2292.

[29]Shen Y, Gao B, Yang X, et al., 2014. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake. Engineering Geology, 180:85-98.

[30]Voit K, Zimmermann T, 2015. Characteristics of selected concrete with tunnel excavation material. Construction & Building Materials, 101:217-226.

[31]Wang J, Gutierrez M, 2010. Discrete element simulations of direct shear specimen scale effects. Géotechnique, 60(5):395-409.

[32]Wu K, Pizette P, Becquart F, et al., 2017. Experimental and numerical study of cylindrical triaxial test on mono-sized glass beads under quasi-static loading condition. Advanced Powder Technology, 28(1):155-166.

[33]Xia X, Li HB, Li JC, et al., 2013. A case study on rock damage prediction and control method for underground tunnels subjected to adjacent excavation blasting. Tunnelling & Underground Space Technology, 35:1-7.

[34]Xiong C, 2014. Technical characteristics and innovation of the cross-Yangtze river tunnel of Wuhan subway line No. 2. Railway Survey and Design, 3:1-7 (in Chinese).

[35]Zhai W, Wei K, Song X, et al., 2015. Experimental investigation into ground vibrations induced by very high speed trains on a non-ballasted track. Soil Dynamics & Earthquake Engineering, 72:24-36.

[36]Zhang S, Xia Y, Ma G, et al., 2013. Reconnaissance and construction key issues for the cross-river tunnel of Wuhan subway line No. 2. Chinese Journal of Underground Space and Engineering, 9(4):914-918 (in Chinese).

[37]Zhang Z, Zhang X, Qiu H, et al., 2016. Dynamic characteristics of track-ballast-silty clay with irregular vibration levels generated by high-speed train based on DEM. Construction & Building Materials, 125:564-573.

[38]Zhou Y, Su K, Wu H, 2015. Hydro-mechanical interaction analysis of high pressure hydraulic tunnel. Tunnelling & Underground Space Technology, 47:28-34.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE