CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-02-25
Cited: 0
Clicked: 4770
Jian Li, Chun-li Zhang, Rong-hao Bao, Wei-qiu Chen. Research laboratory on the mechanics of smart materials and structures, Zhejiang University[J]. Journal of Zhejiang University Science A, 2019, 20(4): 305-310.
@article{title="Research laboratory on the mechanics of smart materials and structures, Zhejiang University",
author="Jian Li, Chun-li Zhang, Rong-hao Bao, Wei-qiu Chen",
journal="Journal of Zhejiang University Science A",
volume="20",
number="4",
pages="305-310",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A19LR002"
}
%0 Journal Article
%T Research laboratory on the mechanics of smart materials and structures, Zhejiang University
%A Jian Li
%A Chun-li Zhang
%A Rong-hao Bao
%A Wei-qiu Chen
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 4
%P 305-310
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A19LR002
TY - JOUR
T1 - Research laboratory on the mechanics of smart materials and structures, Zhejiang University
A1 - Jian Li
A1 - Chun-li Zhang
A1 - Rong-hao Bao
A1 - Wei-qiu Chen
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 4
SP - 305
EP - 310
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A19LR002
Abstract: The Research Laboratory on the Mechanics of smart Materials and Structures (MS2 Laboratory) focuses on understanding the mechanisms underlying the experimentally or numerically observed phenomena of smart materials and intelligent structures, so as to enrich the knowledge for the development of advanced functional devices, machines, and robots. Particular attention is paid to the multi-field coupling behaviors of a variety of high-performance materials (e.g. piezoelectric materials, multiferroic composites, quasicrystals, piezoelectric semiconductors, and dielectric elastomers) and their effects on the structural responses. Free vibration, wave propagation, and instability of structures made of these smart materials are among the most important topics in the laboratory. Although analytical methods are concentrated upon, both experimental and numerical approaches are also widely explored for the research tasks that are carried out.
[1]Cheng RR, Zhang CL, Chen WQ, et al., 2018. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124(6):064506.
[2]Ding HJ, Chen WQ, 2001. Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York, USA.
[3]Ding HJ, Chen WQ, Zhang L, 2006. Elasticity of Transversely Isotropic Materials. Springer, Dordrecht, The Netherlands.
[4]Gao N, Huang YL, Bao RH, et al., 2018. Robustly tuning bandgaps in two-dimensional soft phononic crystals with criss-crossed elliptical holes. Acta Mechanica Solida Sinica, 31(5):573-588.
[5]Gao N, Li J, Bao RH, et al., 2019a. Harnessing uniaxial tension to tune Poisson’s ratio and wave propagation in soft porous phononic crystals: an experimental study. Soft Matter, in press.
[6]Gao N, Li J, Bao RH, et al., 2019b. Study of the band gaps of two dimensional phononic crystals with criss-crossed elliptical holes. Journal of Zhejiang University (Engineering Science), in press (in Chinese).
[7]Huang YL, Gao N, Chen WQ, et al., 2018. Extension/ compression-controlled complete band gaps in 2D chiral square-lattice-like structures. Acta Mechanica Solida Sinica, 31(1):51-65.
[8]Huang YL, Li J, Chen WQ, et al., 2019. Tunable bandgaps in soft phononic plates with spring-mass-like resonators. International Journal of Mechanical Sciences, 151:300-313.
[9]Li YD, Bao RH, Chen WQ, 2018. Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force: is nonlocal effect really always dominant? Composite Structures, 194:357-364.
[10]Liu DY, Kitipornchai S, Chen WQ, et al., 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures, 189: 560-569.
[11]Luo YX, Zhang CL, Chen WQ, et al., 2017. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122(20):204502.
[12]Luo YX, Cheng RR, Zhang CL, et al., 2018a. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31(2):127-140.
[13]Luo YX, Zhang CL, Chen WQ, et al., 2018b. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54:341-348.
[14]Pan E, Chen WQ, 2015. Static Green’s Functions in Anisotropic Media. Cambridge University Press, New York, USA.
[15]Su YP, Wu B, Chen WQ, et al., 2018a. Optimizing parameters to achieve giant deformation of an incompressible dielectric elastomeric plate. Extreme Mechanics Letters, 22: 60-68.
[16]Su YP, Broderick HC, Chen WQ, et al., 2018b. Wrinkles in soft dielectric plates. Journal of the Mechanics and Physics of Solids, 119:298-318.
[17]Wang J, Zhou WJ, Huang Y, et al., 2018. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics, 39(8):1059-1070.
[18]Wang W, Guo YQ, Chen WQ, 2017. Effect of negative permeability on elastic wave propagation in magnetoelastic multilayered composites. Theoretical and Applied Mechanics Letters, 7(3):126-133.
[19]Wu B, Su YP, Liu DY, et al., 2018a. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders. Journal of Sound and Vibration, 421:17-47.
[20]Wu B, Zhou WJ, Bao RH, et al., 2018b. Tuning elastic waves in soft phononic crystal cylinders via large deformation and electromechanical coupling. Journal of Applied Mechanics, 85(3):031004.
[21]Wu B, Pagani A, Filippi M, et al., 2019. Accurate stress fields of post-buckled laminated composite beams accounting for various kinematics. International Journal of Non-Linear Mechanics, in press.
[22]Wu F, Li XY, Chen WQ, et al., 2018. Indentation on a transversely isotropic half-space of multiferroic composite medium with a circular contact region. International Journal of Engineering Science, 123:236-289.
[23]Yuan JH, Huang Y, Chen WQ, et al., 2019. Theory of dislocation loops in multilayered anisotropic solids with magneto-electro-elastic couplings. Journal of the Mechanics and Physics of Solids, 125:440-471.
[24]Zhang CL, Chen WQ, 2010. A wideband magnetic energy harvester. Applied Physics Letters, 96(12):123507.
[25]Zhang CL, Wang XY, Chen WQ, et al., 2016. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):37-44.
[26]Zhang SL, Xu MY, Zhang CL, et al., 2018. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy, 48:421-429.
[27]Zhou WJ, Li XP, Wang YS, et al., 2017. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. Journal of Sound and Vibration, 413:250-269.
[28]Zhou WJ, Wu B, Muhammad, et al., 2018. Actively tunable transverse waves in soft membrane-type acoustic metamaterials. Journal of Applied Physics, 123(16):165304.
[29]Zhu FB, Zhang CL, Qian J, et al., 2016. Mechanics of dielectric elastomers: materials, structures, and devices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):1-21.
[30]Zhu J, Chen HY, Wu B, et al., 2018. Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates. International Journal of Mechanical Sciences, 146-147:81-90.
Open peer comments: Debate/Discuss/Question/Opinion
<1>