Full Text:   <2790>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-02-25

Cited: 0

Clicked: 4770

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-qiu Chen

https://orcid.org/0000-0003-0655-3303

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.4 P.305-310

http://doi.org/10.1631/jzus.A19LR002


Research laboratory on the mechanics of smart materials and structures, Zhejiang University


Author(s):  Jian Li, Chun-li Zhang, Rong-hao Bao, Wei-qiu Chen

Affiliation(s):  Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou 310027, China; more

Corresponding email(s):   chenwq@zju.edu.cn

Key Words:  Smart Materials and Structures, Multi-field coupling, Intelligent device


Share this article to: More <<< Previous Article|

Jian Li, Chun-li Zhang, Rong-hao Bao, Wei-qiu Chen. Research laboratory on the mechanics of smart materials and structures, Zhejiang University[J]. Journal of Zhejiang University Science A, 2019, 20(4): 305-310.

@article{title="Research laboratory on the mechanics of smart materials and structures, Zhejiang University",
author="Jian Li, Chun-li Zhang, Rong-hao Bao, Wei-qiu Chen",
journal="Journal of Zhejiang University Science A",
volume="20",
number="4",
pages="305-310",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A19LR002"
}

%0 Journal Article
%T Research laboratory on the mechanics of smart materials and structures, Zhejiang University
%A Jian Li
%A Chun-li Zhang
%A Rong-hao Bao
%A Wei-qiu Chen
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 4
%P 305-310
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A19LR002

TY - JOUR
T1 - Research laboratory on the mechanics of smart materials and structures, Zhejiang University
A1 - Jian Li
A1 - Chun-li Zhang
A1 - Rong-hao Bao
A1 - Wei-qiu Chen
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 4
SP - 305
EP - 310
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A19LR002


Abstract: 
The Research Laboratory on the Mechanics of smart Materials and Structures (MS2 Laboratory) focuses on understanding the mechanisms underlying the experimentally or numerically observed phenomena of smart materials and intelligent structures, so as to enrich the knowledge for the development of advanced functional devices, machines, and robots. Particular attention is paid to the multi-field coupling behaviors of a variety of high-performance materials (e.g. piezoelectric materials, multiferroic composites, quasicrystals, piezoelectric semiconductors, and dielectric elastomers) and their effects on the structural responses. Free vibration, wave propagation, and instability of structures made of these smart materials are among the most important topics in the laboratory. Although analytical methods are concentrated upon, both experimental and numerical approaches are also widely explored for the research tasks that are carried out.

浙江大学智能材料与结构力学研究实验室

目的:如今新兴的智能化时代比以往任何时候都更需要性能优越的材料和结构来设计更灵活、更主动、更自动化的机器和系统,以应对越来越复杂的环境. 本实验室力图探求智能材料与结构在实验或计算中观测到的力学现象(如自由振动、波传播以及结构失稳等)或是多场耦合行为背后的机理,从而为先进功能设备、机械以及机器人的创新发展提供参考. 最终,开发具有卓越性能的新型智能多功能器件,以满足各种实验室、工业甚至社会应用的特殊或一般要求.
研究点:1. 智能结构的振动与失稳分析; 2. 软材料的设计与制备; 3. 声子晶体和超材料中弹性波的调控; 4. 智能材料和结构中的多场耦合行为分析; 5. 压电、多铁性以及压电电子学器件的研发; 6. 多轴力/力矩智能传感器的设计.
展望:虽然对智能材料和结构的研究已有近40年的历史,且其在许多现代技术和工程领域中已有了成功的应用,但是即将到来的智能化时代对"智能力学"的需求将是无穷无尽的. 如果说传感器和驱动器是智能化时代的基础,那么智能材料和结构就是这些基本设备的核心. 新型多功能材料的开发显然为智能材料和结构力学带来了新的生机和活力. 此外,拓扑物理学等新的科学概念也将为智能材料和结构的研究开辟新的方向. 本实验室将继续为基础科学、技术发展以及智能材料和结构的实际应用做出贡献.

关键词:智能材料和结构力学; 多场耦合; 智能器件; 智能力学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng RR, Zhang CL, Chen WQ, et al., 2018. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124(6):064506.

[2]Ding HJ, Chen WQ, 2001. Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York, USA.

[3]Ding HJ, Chen WQ, Zhang L, 2006. Elasticity of Transversely Isotropic Materials. Springer, Dordrecht, The Netherlands.

[4]Gao N, Huang YL, Bao RH, et al., 2018. Robustly tuning bandgaps in two-dimensional soft phononic crystals with criss-crossed elliptical holes. Acta Mechanica Solida Sinica, 31(5):573-588.

[5]Gao N, Li J, Bao RH, et al., 2019a. Harnessing uniaxial tension to tune Poisson’s ratio and wave propagation in soft porous phononic crystals: an experimental study. Soft Matter, in press.

[6]Gao N, Li J, Bao RH, et al., 2019b. Study of the band gaps of two dimensional phononic crystals with criss-crossed elliptical holes. Journal of Zhejiang University (Engineering Science), in press (in Chinese).

[7]Huang YL, Gao N, Chen WQ, et al., 2018. Extension/ compression-controlled complete band gaps in 2D chiral square-lattice-like structures. Acta Mechanica Solida Sinica, 31(1):51-65.

[8]Huang YL, Li J, Chen WQ, et al., 2019. Tunable bandgaps in soft phononic plates with spring-mass-like resonators. International Journal of Mechanical Sciences, 151:300-313.

[9]Li YD, Bao RH, Chen WQ, 2018. Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force: is nonlocal effect really always dominant? Composite Structures, 194:357-364.

[10]Liu DY, Kitipornchai S, Chen WQ, et al., 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures, 189: 560-569.

[11]Luo YX, Zhang CL, Chen WQ, et al., 2017. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122(20):204502.

[12]Luo YX, Cheng RR, Zhang CL, et al., 2018a. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31(2):127-140.

[13]Luo YX, Zhang CL, Chen WQ, et al., 2018b. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54:341-348.

[14]Pan E, Chen WQ, 2015. Static Green’s Functions in Anisotropic Media. Cambridge University Press, New York, USA.

[15]Su YP, Wu B, Chen WQ, et al., 2018a. Optimizing parameters to achieve giant deformation of an incompressible dielectric elastomeric plate. Extreme Mechanics Letters, 22: 60-68.

[16]Su YP, Broderick HC, Chen WQ, et al., 2018b. Wrinkles in soft dielectric plates. Journal of the Mechanics and Physics of Solids, 119:298-318.

[17]Wang J, Zhou WJ, Huang Y, et al., 2018. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics, 39(8):1059-1070.

[18]Wang W, Guo YQ, Chen WQ, 2017. Effect of negative permeability on elastic wave propagation in magnetoelastic multilayered composites. Theoretical and Applied Mechanics Letters, 7(3):126-133.

[19]Wu B, Su YP, Liu DY, et al., 2018a. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders. Journal of Sound and Vibration, 421:17-47.

[20]Wu B, Zhou WJ, Bao RH, et al., 2018b. Tuning elastic waves in soft phononic crystal cylinders via large deformation and electromechanical coupling. Journal of Applied Mechanics, 85(3):031004.

[21]Wu B, Pagani A, Filippi M, et al., 2019. Accurate stress fields of post-buckled laminated composite beams accounting for various kinematics. International Journal of Non-Linear Mechanics, in press.

[22]Wu F, Li XY, Chen WQ, et al., 2018. Indentation on a transversely isotropic half-space of multiferroic composite medium with a circular contact region. International Journal of Engineering Science, 123:236-289.

[23]Yuan JH, Huang Y, Chen WQ, et al., 2019. Theory of dislocation loops in multilayered anisotropic solids with magneto-electro-elastic couplings. Journal of the Mechanics and Physics of Solids, 125:440-471.

[24]Zhang CL, Chen WQ, 2010. A wideband magnetic energy harvester. Applied Physics Letters, 96(12):123507.

[25]Zhang CL, Wang XY, Chen WQ, et al., 2016. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):37-44.

[26]Zhang SL, Xu MY, Zhang CL, et al., 2018. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy, 48:421-429.

[27]Zhou WJ, Li XP, Wang YS, et al., 2017. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. Journal of Sound and Vibration, 413:250-269.

[28]Zhou WJ, Wu B, Muhammad, et al., 2018. Actively tunable transverse waves in soft membrane-type acoustic metamaterials. Journal of Applied Physics, 123(16):165304.

[29]Zhu FB, Zhang CL, Qian J, et al., 2016. Mechanics of dielectric elastomers: materials, structures, and devices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):1-21.

[30]Zhu J, Chen HY, Wu B, et al., 2018. Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates. International Journal of Mechanical Sciences, 146-147:81-90.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE