Full Text:   <2616>

Summary:  <1928>

CLC number: V211.48

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-08-28

Cited: 0

Clicked: 3759

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hao Jiang

https://orcid.org/0000-0001-7251-7875

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.9 P.745-760

http://doi.org/10.1631/jzus.A2000025


Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators


Author(s):  Hao Jiang, Jun Liu, Shi-chao Luo, Jun-yuan Wang, Wei Huang

Affiliation(s):  Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   jiangjeb@163.com

Key Words:  Hypersonic, Shock wave/turbulent boundary layer interaction, Magnetohydrodynamic (MHD), Flow control


Hao Jiang, Jun Liu, Shi-chao Luo, Jun-yuan Wang, Wei Huang. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators[J]. Journal of Zhejiang University Science A, 2020, 21(9): 745-760.

@article{title="Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators",
author="Hao Jiang, Jun Liu, Shi-chao Luo, Jun-yuan Wang, Wei Huang",
journal="Journal of Zhejiang University Science A",
volume="21",
number="9",
pages="745-760",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000025"
}

%0 Journal Article
%T Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators
%A Hao Jiang
%A Jun Liu
%A Shi-chao Luo
%A Jun-yuan Wang
%A Wei Huang
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 9
%P 745-760
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000025

TY - JOUR
T1 - Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators
A1 - Hao Jiang
A1 - Jun Liu
A1 - Shi-chao Luo
A1 - Jun-yuan Wang
A1 - Wei Huang
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 9
SP - 745
EP - 760
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000025


Abstract: 
The effect of magnetohydrodynamic (MHD) plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation. A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma. Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected. On the basis of the relative position of control area and separation point, MHD control can be divided into four types and so effects and mechanisms might be different. Amongst these, D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region. A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied. The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.

高超声速激波/湍流边界层干扰电磁控制研究

目的:临近空间中下层巡航的新一代高超声速飞行器面临着高马赫数激波/湍流边界层干扰的问题.本文旨在探讨磁场/电弧放电耦合作用因素(焦耳热作用、放电参数、磁场强度、电弧作用流向位置和壁面距离等)对高马赫数工况下激波/湍流边界层干扰控制的影响,并提出激波/湍流边界层干扰洛伦兹力控制能力的参数表征,以揭示电磁控制的原理和能力.
创新点:1. 建立低磁雷诺数假设下的激波/湍流边界层干扰数值模拟方法,对高超声速激波/湍流边界层干扰进行电磁控制,总结分析控制类型与控制机理,并根据仿真结果提出最佳控制参数建议. 2. 建立针对激波/湍流边界层干扰的磁控能力预测参数,以指导高超声速飞行器典型激波/湍流边界层干扰的磁控设计.
方法:1. 建立低磁雷诺数假设下的激波/湍流边界层干扰数值模拟方法,并分别对电磁力控制边界层、激波/湍流边界层干扰和湍流边界层速度剖面进行计算,验证使用方法的可靠性和有效性. 2. 采用相关实验的电磁激励器的半经验模型,对二维稳态假设下的激波入射平板进行数值模拟,并研究电磁输入参数对分离区大小的影响. 3. 通过理论分析,建立针对激波/湍流边界层干扰的磁控评价参数,并通过不同磁控强度下的数值仿真进行验证.
结论:1. 四种电磁控制类型的控制机理和控制效果不同;电磁控制区位于分离泡内的等压区且距离壁面越近对减弱激波/湍流边界层干扰分离的效果越好. 2. 电磁控制后等压区压力梯度与外加电磁力处于同一量级且呈近似线性关系. 3. 本文所提出的磁控参数的物理意义更加明确,可进一步应用于对不同工况下激波/湍流边界层干扰分离控制的预测.

关键词:高超声速; 激波/湍流边界层干扰; 磁流体; 流动控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adamovich IV, 2010. Plasma dynamics and flow control applications. In: Blockley R, Shyy W (Eds.), Encyclopedia of Aerospace Engineering. John Wiley & Sons, Chichester, UK, p.1-9.

[2]Atkinson MD, Poggie J, Camberos JA, 2012. Control of separated flow in a reflected shock interaction using a magnetically-accelerated surface discharge. Physics of Fluids, 24(12):126102.

[3]Babinsky H, Harvey JK, 2011. Shock Wave-boundary-layer Interactions. Cambridge University Press, Cambridge, UK, p.28-36.

[4]Babinsky H, Li Y, Ford CWP, 2009. Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA Journal, 47(3):668-675.

[5]Bisek N, Poggie J, 2013. Large-eddy simulations of separated supersonic flow with plasma control. Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.

[6]Bisek NJ, Rizzetta DP, Poggie J, 2013. Plasma control of a turbulent shock boundary-layer interaction. AIAA Journal, 51(8):1789-1804.

[7]Brown JL, 2011. Shock wave impingement on boundary layers at hypersonic speeds: computational analysis and uncertainty. Proceedings of the 42nd AIAA Thermophysics Conference.

[8]Chapman DR, Kuehn DM, Larson HK, 1958. Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition. Technical Report 1356, NACA, Moffett Field, USA.

[9]Cuppoletti DR, Saucier C, Harris C, 2016. Control of shock-induced boundary layer separation by high momentum blowing. Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference.

[10]Dietiker JF, Hoffmann K, 2002. Boundary layer control in magnetohydrodynamic flows. Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit.

[11]Gaitonde DV, 2015. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 72:80-99.

[12]Gan T, Wu Y, Sun ZZ, et al., 2018. Shock wave boundary layer interaction controlled by surface arc plasma actuators. Physics of Fluids, 30(5):055107.

[13]Huang W, Wu H, Yang YG, et al., 2020. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. Acta Astronautica, 174: 103-122.

[14]John B, Kulkarni V, 2014. Numerical assessment of correlations for shock wave boundary layer interaction. Computers & Fluids, 90:42-50.

[15]Kalra CS, Shneider MN, Miles RB, 2009. Numerical study of boundary layer separation control using magnetogasdynamic plasma actuators. Physics of Fluids, 21(10):106101.

[16]Kalra CS, Zaidi SH, Miles RB, et al., 2011. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges. Experiments in Fluids, 50(3):547-559.

[17]Kolev S, Bogaerts A, 2014. A 2D model for a gliding arc discharge. Plasma Sources Science and Technology, 24(1):015025.

[18]Leonov S, Bityurin V, Savelkin K, et al., 2002. The features of electro-discharge plasma control of high-speed gas flows. Proceedings of the 33rd Plasmadynamics and Lasers Conference.

[19]Li K, Liu J, Liu WQ, 2017a. Mechanism analysis of magnetohydrodynamic heat shield system and optimization of externally applied magnetic field. Acta Astronautica, 133: 14-23.

[20]Li K, Liu J, Liu WQ, 2017b. Thermal protection performance of magnetohydrodynamic heat shield system based on multipolar magnetic field. Acta Astronautica, 136:248-258.

[21]Macheret S, 2006. Physics of magnetically accelerated nonequilibrium surface discharges in high-speed flow. Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit.

[22]Macheret SO, Shneider MN, Miles RB, 2004. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas. AIAA Journal, 42(7):1378-1387.

[23]Meyer R, Chintala N, Adamovich I, et al., 2004. Lorentz force effect on a supersonic ionized boundary layer. Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit.

[24]Narayanaswamy V, Raja LL, Clemens NT, 2012. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA Journal, 50(1):246-249.

[25]Pirozzoli S, Grasso F, Gatski TB, 2004. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25. Physics of Fluids, 16(3):530-545.

[26]Poggie J, McLaughlin T, Leonov S, 2015. Plasma aerodynamics: current status and future directions. AerospaceLab Journal, (10):1-6.

[27]Richard F, Cormier JM, Pellerin S, et al., 1996. Physical study of a gliding arc discharge. Journal of Applied Physics, 79(5):2245-2250.

[28]Saito S, Udagawa K, Kawaguchi K, et al., 2008. Boundary layer separation control by MHD interaction. Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit.

[29]Schülein E, 2006. Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA Journal, 44(8):1732-1741.

[30]Shang JS, Surzhikov ST, 2005. Magnetoaerodynamic actuator for hypersonic flow control. AIAA Journal, 43(8):1633-1652.

[31]Souverein LJ, Bakker PG, Dupont P, 2013. A scaling analysis for turbulent shock-wave/boundary-layer interactions. Journal of Fluid Mechanics, 714:505-535.

[32]Sriram R, Jagadeesh G, 2014. Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed. Aerospace Science and Technology, 36:87-93.

[33]Su WY, Chang XY, Zhang KY, 2010. Effects of magnetohydrodynamic interaction-zone position on shock-wave/ boundary-layer interaction. Journal of Propulsion and Power, 26(5):1053-1058.

[34]Threadgill JA, Bruce PJ, 2016. Shock wave boundary layer interaction unsteadiness: the effects of configuration and strength. Proceedings of the 54th AIAA Aerospace Sciences Meeting.

[35]Viswanath PR, 1988. Shock-wave-turbulent-boundary-layer interaction and its control: a survey of recent developments. Sadhana, 12(1-2):45-104.

[36]White FM, 1991. Viscous Fluid Flow, 2nd Edition. McGraw-Hill, New York, USA, p.543-555.

[37]Yao Y, Gao B, 2019. Flow structure of incident shock wave boundary layer interaction with separation. Acta Aerodynamica Sinica, 37(5):740-747 (in Chinese).

[38]Zaidi S, Smith T, Macheret S, et al., 2006. Snowplow surface discharge in magnetic field for high speed boundary layer control. Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit.

[39]Zhang WH, Liu J, Ding F, et al., 2019. Novel integration methodology for an inward turning waverider forebody/ inlet. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(12):918-926.

[40]Zhou Y, Xia ZX, Luo ZB, et al., 2017. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control. Acta Astronautica, 133:95-102.

[41]Zhou YY, Zhao YL, Zhao YX, 2019. A study on the separation length of shock wave/turbulent boundary layer interaction. International Journal of Aerospace Engineering, 2019: 8323787.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE