Full Text:   <649>

Summary:  <95>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-09-29

Cited: 0

Clicked: 1006

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jiawei SHI

https://orcid.org/0009-0007-8850-9926

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.9 P.716-731

http://doi.org/10.1631/jzus.A2300307


Effect of geometry simplification and boundary condition specification on flow field and aerodynamic noise in the train head and bogie region of high-speed trains


Author(s):  Jiawei SHI, Yuan HE, Jiye ZHANG, Tian LI

Affiliation(s):  State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China; more

Corresponding email(s):   sjw7001@126.com

Key Words:  Bogie region, Train head, Flow field, Aerodynamic noise, Geometry simplification, Boundary conditions


Jiawei SHI, Yuan HE, Jiye ZHANG, Tian LI. Effect of geometry simplification and boundary condition specification on flow field and aerodynamic noise in the train head and bogie region of high-speed trains[J]. Journal of Zhejiang University Science A, 2024, 25(9): 716-731.

@article{title="Effect of geometry simplification and boundary condition specification on flow field and aerodynamic noise in the train head and bogie region of high-speed trains",
author="Jiawei SHI, Yuan HE, Jiye ZHANG, Tian LI",
journal="Journal of Zhejiang University Science A",
volume="25",
number="9",
pages="716-731",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300307"
}

%0 Journal Article
%T Effect of geometry simplification and boundary condition specification on flow field and aerodynamic noise in the train head and bogie region of high-speed trains
%A Jiawei SHI
%A Yuan HE
%A Jiye ZHANG
%A Tian LI
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 9
%P 716-731
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300307

TY - JOUR
T1 - Effect of geometry simplification and boundary condition specification on flow field and aerodynamic noise in the train head and bogie region of high-speed trains
A1 - Jiawei SHI
A1 - Yuan HE
A1 - Jiye ZHANG
A1 - Tian LI
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 9
SP - 716
EP - 731
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300307


Abstract: 
The purpose of this study is to determine a suitable modeling method to make computational fluid dynamics (CFD) simulation more efficient for aeroacoustics optimization of the bogie region of high-speed trains. To this end, four modeling methods are considered, which involve different geometry simplifications and boundary condition specifications. The corresponding models are named the three-car marshalling model, computational domain shortening model, carbody shortening model, and sub-domain model. Combining the detached eddy simulation (DES) model and Ffowcs Williams-Hawkings (FW-H) equation, the unsteady flow field and far-field noise of the four models are predicted. To evaluate the effect of the different modeling methods, the time-averaged flow field, fluctuating flow field, and far-field noise results of the four models are compared and analyzed in detail with the results of the three-car marshalling model used as basis for comparison. The results show that the flow field results of the bogie region predicted by the four models have relatively high consistency. However, the usage of the non-time varying outlet boundary conditions in the computational domain shortening model and sub-domain model could affect the pressure fluctuation on the upstream carbody surface. When only the bogie region is used as the source surface, the differences between the far-field noise results of the three simplified models and the three-car marshalling model are all within 1 dB; when the train head is used as the source surface, the results of the carbody shortening model and the three-car marshalling model are more consistent.

几何简化和边界条件指定对高速列车车头和转向架区域流场和气动噪声的影响

作者:史佳伟1,何源2,张继业1,李田1
机构:1西南交通大学,轨道交通运载系统全国重点实验室,中国成都,610031;2南安普敦大学,工程与物理科学学院声与振动研究所,英国南安普敦,SO17 1BJ
目的:确定一种合适的简化建模方法以使计算流体动力学(CFD)模拟在高速列车转向架区域气动声学优化中更高效。
创新点:1.确定了一种合适的简化建模方法,该方法能够在保证与三车编组模型中头车第一个转向架区域流场和声学结果一致性的同时显著提高CFD模拟在高速列车转向架区域气动声学优化中的效率。2.通过对三种简化模型和三车编组模型流场和声学结果的对比和分析,确定了三种简化模型中涉及的不同几何简化和边界条件指定对车头和转向架区域流场和气动噪声的影响机理。
方法:1.在三车编组模型的基础上,建立用于高速列车转向架区域气动噪声计算的三种简化模型;2.结合IDDES模型和FW-H声类比理论建立转向架区域非定常流场和气动噪声预测的数值模型,并通过低马赫数空腔模型和简单转向架模型对数值方法和网格策略进行验证;3.以三车编组模型的计算结果为基准,对三种简化模型和三车编组模型的流场和声学结果进行对比和分析,确定与三车编组模型计算结果一致性最好的建模方式,并揭示三种简化模型中涉及的不同几何简化和边界条件指定对车头和转向架区域流场和气动噪声的影响机理。
结论:1.基于三种简化模型计算得到的列车表面时均压力分布和转向架区域时均速度分布与三车模型的计算结果非常一致。2.列车下部的压力波动较列车上部剧烈得多;三种简化模型的转向架区域脉动压力结果与三车模型的计算结果有很好的一致性;在列车上部,计算域缩短模型和子域模型低估了车头流线型曲面上的压力波动,而车体缩短模型的结果与三车编组模型的结果吻合较好;这是计算域缩短模型和子域模型中使用的非时变出口边界条件造成的。3.当仅以转向架区域作为声源时,三种简化模型的远场噪声结果与三车编组模型结果之间的差异都很小,且总声压级差异均在1 dB以内;当以整个车头作为噪声源时,由于计算域缩短模型和子域模型低估了车头流线型表面偶极子源的强度,所以它们与三车编组模型的总声压级结果最大差异分别为1.3 dB和1.8 dB,而车体缩短模型与三车编组模型的总声压级结果差异仍在1 dB以内。因此,车体缩短模型是转向架区域气动声学优化的一个很好的选择;它可以在保证与三车编组模型计算结果一致性的同时显著提高CFD模拟的效率。

关键词:转向架区域;车头;流场;气动噪声;几何简化;边界条件

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BellJR, BurtonD, ThompsonMC, et al., 2017. A wind-tunnel methodology for assessing the slipstream of high-speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 166:1-19.

[2]ChangC, LiT, QinD, et al., 2022. On the scale size of the aerodynamic characteristics of a high-speed train. Journal of Applied Fluid Mechanics, 15(1):209-219.

[3]DingSS, LiQ, TianAQ, et al., 2016. Aerodynamic design on high-speed trains. Acta Mechanica Sinica, 32(2):215-232.

[4]DongTY, LiangXF, KrajnovićS, et al., 2019. Effects of simplifying train bogies on surrounding flow and aerodynamic forces. Journal of Wind Engineering and Industrial Aerodynamics, 191:170-182.

[5]FarassatF, 2007. Derivation of Formulations 1 and 1A of Farassat. Technical Report No. NASA/TM-2007-214853, NASA Langley Research Center, Hampton, USA.

[6]GaoY, LiQL, WangYG, 2017. Analysis method of aerodynamic noise of full scale high speed train head shape. Journal of Dalian Jiaotong University, 38(3):30-35 (in Chinese).

[7]GuoZJ, LiuTH, ChenZW, et al., 2020. Aerodynamic influences of bogie’s geometric complexity on high-speed trains under crosswind. Journal of Wind Engineering and Industrial Aerodynamics, 196:104053.

[8]KarbonKJ, DietschiUD, 2005. Computational analysis and design to minimize vehicle roof rack wind noise. Journal of Passenger Car: Mechanical Systems Journal, 114(6):649-656.

[9]KhierW, BreuerM, DurstF, 2000. Flow structure around trains under side wind conditions: a numerical study. Computers & Fluids, 29(2):179-195.

[10]KimH, HuZW, ThompsonD, 2020. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise. Journal of Wind Engineering and Industrial Aerodynamics, 201:104159.

[11]LauterbachA, EhrenfriedK, LooseS, et al., 2012. Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics. International Journal of Aeroacoustics, 11(3-4):411-446.

[12]LiT, DaiZY, ZhangWH, 2020a. Effect of RANS model on the aerodynamic characteristics of a train in crosswinds using DDES. Computer Modeling in Engineering & Sciences, 122(2):555-570.

[13]LiT, QinD, ZhangWH, et al., 2020b. Study on the aerodynamic noise characteristics of high-speed pantographs with different strip spacings. Journal of Wind Engineering and Industrial Aerodynamics, 202:104191.

[14]LiZM, LiQL, YangZG, 2022. Flow structure and far-field noise of high-speed train under ballast track. Journal of Wind Engineering and Industrial Aerodynamics, 220:104858.

[15]LiuJL, ZhangJY, ZhangWH, 2011. Numerical analysis on aerodynamic noise of the high-speed train head. Journal of the China Railway Society, 33(9):19-26 (in Chinese).

[16]MeskineM, PérotF, KimMS, et al., 2013. Community noise prediction of digital high speed train using LBM. The 19th AIAA/CEAS Aeroacoustics Conference.

[17]MinelliG, YaoHD, AnderssonN, et al., 2020. An aeroacoustic study of the flow surrounding the front of a simplified ICE3 high-speed train model. Applied Acoustics, 160:107125.

[18]PlentovichEB, Stallings JrRL, TracyMB, 1993. Experimental Cavity Pressure Measurements at Subsonic and Transonic Speeds. Technical Report No. NASA-TP-3358, NASA Langley Research Center, Hampton, USA.

[19]SchellA, EiseltM, 2020. Numerical investigation of tonal noise at automotive side mirrors due to aeroacoustic feedback. The 11th International Styrian Noise, Vibration & Harshness Congress: the European Automotive Noise Conference.

[20]ShiJW, ZhangJY, 2024. Effect of bogie cavity end wall inclination on flow field and aerodynamic noise in the bogie region of high-speed trains. CMES-Computer Modeling in Engineering & Sciences, 139(2):2175-2195.

[21]ShiJW, ZhangJY, LiT, 2024. Aerodynamic noise reduction of high-speed pantograph by introducing planar jet on leeward surface of panhead. Journal of Wind Engineering and Industrial Aerodynamics, 250:105780.

[22]ShurML, SpalartPR, StreletsMK, et al., 2008. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6):1638-1649.

[23]softwareSiemens PLM, 2017. STAR-CCM+User Guide (Version 12.04). Siemens.

[24]SpalartPR, DeckS, ShurML, et al., 2006. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20(3):181-195.

[25]ThompsonDJ, 2008. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Elsevier, Amsterdam, the Netherlands.

[26]ThompsonDJ, IglesiasEL, LiuXW, et al., 2015. Recent developments in the prediction and control of aerodynamic noise from high-speed trains. International Journal of Rail Transportation, 3(3):119-150.

[27]WangJB, MinelliG, DongTY, et al., 2020. Impact of the bogies and cavities on the aerodynamic behaviour of a high-speed train. An IDDES study. Journal of Wind Engineering and Industrial Aerodynamics, 207:104406.

[28]WilliamsJEF, HawkingsDL, 1969. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 264(1151):341-342.

[29]YaoHD, ChroneerZ, DavidsonL, 2018. Simplifications applied to simulation of turbulence induced by a side view mirror of a full-scale truck using DES. WCX World Congress Experience.

[30]ZhaoYY, YangZG, LiQL, et al., 2020. Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system. Applied Acoustics, 169:107506.

[31]ZhuJY, 2015. Aerodynamic Noise of High-Speed Train Bogies. PhD Thesis, University of Southampton, Southampton, UK.

[32]ZhuJY, HuZW, 2017. Flow between the train underbody and trackbed around the bogie area and its impact on ballast flight. Journal of Wind Engineering and Industrial Aerodynamics, 166:20-28.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE