Full Text:   <113>

Summary:  <61>

CLC number: 

On-line Access: 2024-05-28

Received: 2023-12-25

Revision Accepted: 2024-02-10

Crosschecked: 2024-05-28

Cited: 0

Clicked: 145

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jun Ma

https://orcid.org/0000-0002-6127-000X

Feifei YANG

https://orcid.org/0000-0002-1649-1225

Lujie REN

https://orcid.org/0000-0002-6906-3259

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.5 P.382-394

http://doi.org/10.1631/jzus.A2300651


Two simple memristive maps with adaptive energy regulation and digital signal process verification


Author(s):  Feifei YANG, Lujie REN, Jun MA, Zhigang ZHU

Affiliation(s):  College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China; more

Corresponding email(s):   hyperchaos@lut.edu.cn

Key Words:  Hamilton energy, Discrete memristor, Self-adaptive regulation, Digital signal process (DSP) implementation


Feifei YANG, Lujie REN, Jun MA, Zhigang ZHU. Two simple memristive maps with adaptive energy regulation and digital signal process verification[J]. Journal of Zhejiang University Science A, 2024, 25(5): 382-394.

@article{title="Two simple memristive maps with adaptive energy regulation and digital signal process verification",
author="Feifei YANG, Lujie REN, Jun MA, Zhigang ZHU",
journal="Journal of Zhejiang University Science A",
volume="25",
number="5",
pages="382-394",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300651"
}

%0 Journal Article
%T Two simple memristive maps with adaptive energy regulation and digital signal process verification
%A Feifei YANG
%A Lujie REN
%A Jun MA
%A Zhigang ZHU
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 5
%P 382-394
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300651

TY - JOUR
T1 - Two simple memristive maps with adaptive energy regulation and digital signal process verification
A1 - Feifei YANG
A1 - Lujie REN
A1 - Jun MA
A1 - Zhigang ZHU
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 5
SP - 382
EP - 394
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300651


Abstract: 
Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms, while energy characteristics are crucial for practical application because any hardware realizations of nonlinear systems are relative to energy flow. The involvement of memristive terms relative to memristors enables multistability and initial-dependent property in memristive systems. In this study, two kinds of memristors are used to couple a capacitor or an inductor, along with a nonlinear resistor, to build different neural circuits. The corresponding circuit equations are derived to develop two different types of memristive oscillators, which are further converted into two kinds of memristive maps after linear transformation. The hamilton energy function for memristive oscillators is obtained by applying the Helmholz theorem or by mapping from the field energy of the memristive circuits. The hamilton energy functions for both memristive maps are obtained by replacing the gains and discrete variables for the memristive oscillator with the corresponding parameters and variables. The two memristive maps have rich dynamic behaviors including coherence resonance under noisy excitation, and an adaptive growth law for parameters is presented to express the self-adaptive property of the memristive maps. A digital signal process (DSP) platform is used to verify these results. Our scheme will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map-energy calculation.

两类自适应能量调控的忆阻映射和数字电路实现

作者:杨飞飞1,2,任璐洁3,马军1,2,朱志刚2
机构:1兰州理工大学,电气工程与信息工程学院,中国兰州,730050;2兰州理工大学,物理系,中国兰州,730050;3大连工业大学,信息科学与工程学院,中国大连,116034
目的:从物理角度论证忆阻型映射设计的方法和可靠性判据,给出能量函数并表达其自适应调控的机理。
创新点:1.设计两种不同忆阻型映射并论证忆阻型映射的物理可靠性;2.给出忆阻映射的能量函数定义方法;3.提出自适应调控忆阻映射的能力机理。
方法:1.以两类忆阻器分别耦合电感型和电容型器件,设计两类忆阻电路和忆阻振子;2.利用两种方法分别计算忆阻振子的能量函数;3.对忆阻振子的变量和参数进行线性变换得到对应的忆阻映射和能量函数;4.引入阶跃函数和取整函数来表达参数自适应调整,忆阻振子能量超过一定阈值则促进参数进一步增长。
结论:1.非线性电路和振子的构造需要最基本的电感型、电容性器件和非线性器件(变量和函数);2.能量决定着振子和映射的振荡模态;3.包含时间标度的线性变换可以把非线性振子转换为等效的非线性映射;4.随机性刺激可诱发忆阻映射产生相干共振;5.准确的能量定义有利于判断非线性振子的物理意义和可靠性。

关键词:哈密顿能量;离散忆阻器;自适应调控;数字电路实现

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BaoBC, LiHZ, WuHG, et al., 2020. Hyperchaos in a second order discrete memristor based map model. Electronics Letters, 56(15):769-770.

[2]BaoBC, ZhaoQH, YuXH, et al., 2023a. Complex dynamics and initial state effects in a two-dimensional sine-bounded memristive map. Chaos, Solitons & Fractals, 173:113748.

[3]BaoBC, HuJT, CaiJM, et al., 2023b. Memristor-induced mode transitions and extreme multistability in a map-based neuron model. Nonlinear Dynamics, 111(4):‍3765-3779.

[4]BaoH, ZhangYZ, LiuWB, et al., 2020. Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dynamics, 100(1):937-950.

[5]BaoH, ChenZG, CaiJM, et al., 2022. Memristive cyclic three-neuron-based neural network with chaos and global coexisting attractors. Science China Technological Sciences, 65(11):2582-2592.

[6]BaoH, LiKX, MaJ, et al., 2023. Memristive effects on an improved discrete Rulkov neuron model. Science China Technological Sciences, 66(11):3153-3163.

[7]BatasD, FiedlerH, 2011. A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2):250-255.

[8]BoybatI, le GalloM, NandakumarSR, et al., 2018. Neuromorphic computing with multi-memristive synapses. Nature Communications, 9(1):2514.

[9]CaoHL, WangY, BanerjeeS, et al., 2024. A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: design, dynamical analysis, DSP implementation and its application. Chaos, Solitons & Fractals, 179:114466.

[10]ChandíaKJ, BolognaM, TelliniB, 2018. Multiple scale approach to dynamics of an LC circuit with a charge-controlled memristor. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1):120-124.

[11]ChenM, QiJW, WuHG, et al., 2020. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive Fitzhugh-Nagumo circuit. Science China Technological Sciences, 63(6):1035-1044.

[12]ChuaL, 1971. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5):507-519.

[13]CoviE, BrivioS, SerbA, et al., 2016. Analog memristive synapse in spiking networks implementing unsupervised learning. Frontiers in Neuroscience, 10:482.

[14]DengY, LiYX, 2021. Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map. Chaos, Solitons & Fractals, 150:111064.

[15]DengY, LiYX, 2022. A 2D hyperchaotic discrete memristive map and application in reservoir computing. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3):1817-1821.

[16]FanZY, ZhangCK, WangYM, et al., 2023. Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map. Chaos, Solitons & Fractals, 177:114303.

[17]GokyildirimA, YesilA, BabacanY, 2022. Implementation of a memristor-based 4D chaotic oscillator and its nonlinear control. Analog Integrated Circuits and Signal Processing, 110(1):91-104.

[18]GuoYT, YaoZ, XuY, et al., 2022. Control the stability in chaotic circuit coupled by memristor in different branch circuits. AEU-International Journal of Electronics and Communications, 145:154074.

[19]GuoYT, XieY, WangCN, et al., 2023a. Energy and synchronization between two neurons with nonlinear coupling. Cognitive Neurodynamics, in press.

[20]GuoYT, XieY, MaJ, 2023b. How to define energy function for memristive oscillator and map? Nonlinear Dynamics, 111(23):21903-21915.

[21]HoangDV, DongCST, van HuynhV, et al., 2023. Building discrete maps with memristor and multiple nonlinear terms. Integration, 90:126-130.

[22]HouB, HuXK, GuoYT, et al., 2023. Energy flow and stochastic resonance in a memristive neuron. Physica Scripta, 98(10):105236.

[23]IbarzB, CasadoJM, SanjuánMAF, 2011. Map-based models in neuronal dynamics. Physics Reports, 501(1-2):1-74.

[24]IsahA, NguetchoAST, BinczakS, et al., 2020. Dynamics of a charge controlled memristor in master‍–‍slave coupling. Electronics Letters, 56(4):211-213.

[25]JiP, YeJC, MuY, et al., 2023. Signal propagation in complex networks. Physics Reports, 1017:1-96.

[26]JuzekaevaE, NasretdinovA, BattistoniS, et al., 2019. Coupling cortical neurons through electronic memristive synapse. Advanced Materials Technologies, 4(1):1800350.

[27]LaiQ, YangL, 2023. A new 3-D memristive hyperchaotic map with multi-parameter-relied dynamics. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(4):1625-1629.

[28]LiCL, YangYY, DuJR, et al., 2021. A simple chaotic circuit with magnetic flux-controlled memristor. The European Physical Journal Special Topics, 230(7):1723-1736.

[29]LiXQ, GhoshD, LeiYM, 2023. Chimera states in coupled pendulum with higher-order interaction. Chaos, Solitons & Fractals, 170:113325.

[30]LinHR, WangCH, XuC, et al., 2023. A memristive synapse control method to generate diversified multistructure chaotic attractors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(3):‍942-955.

[31]LiuY, IuHHC, QianYH, 2021. Implementation of Hodgkin-Huxley neuron model with the novel memristive oscillator. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(8):2982-2986.

[32]LiuZL, YuY, WangQY, 2022a. Functional modular organization unfolded by chimera-like dynamics in a large-scale brain network model. Science China Technological Sciences, 65(7):1435-1444.

[33]LiuZL, HanF, WangQY, 2022b. A review of computational models for gamma oscillation dynamics: from spiking neurons to neural masses. Nonlinear Dynamics, 108(3):‍‍‍1849-1866.

[34]LuoLQ, FlanaganJG, 2007. Development of continuous and discrete neural maps. Neuron, 56(2):284-300.

[35]MaJ, 2023. Biophysical neurons, energy, and synapse controllability: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(2):‍109-129.

[36]MaJ, 2024. Energy function for some maps and nonlinear oscillators. Applied Mathematics and Computation, 463:128379.

[37]MaML, YangY, QiuZC, et al., 2022. A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dynamics, 107(3):2935-2949.

[38]MaYJ, MouJ, LuJS, et al., 2023. A discrete memristor coupled two-dimensional generalized square hyperchaotic maps. Fractals, 31(6):2340136.

[39]MajhiS, PercM, GhoshD, 2022. Dynamics on higher-order networks: a review. Journal of the Royal Society Interface, 19(188):20220043.

[40]MehrabbeikM, JafariS, PercM, 2023. Synchronization in simplicial complexes of memristive Rulkov neurons. Frontiers in Computational Neuroscience, 17:1248976.

[41]NjimahOM, RamadossJ, TelemANK, et al., 2023. Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: theoretical analysis and circuit simulation. Chaos, Solitons & Fractals, 166:112983.

[42]Njitacke TabekouengZ, Shankar MuniS, Fonzin FozinT, et al., 2022. Coexistence of infinitely many patterns and their control in heterogeneous coupled neurons through a multistable memristive synapse. Chaos: an Interdisciplinary Journal of Nonlinear Science, 32(5):053114.

[43]ParasteshF, MehrabbeikM, RajagopalK, et al., 2022. Synchronization in Hindmarsh‍–‍Rose neurons subject to higher-order interactions. Chaos: an Interdisciplinary Journal of Nonlinear Science, 32(1):013125.

[44]PedrettiG, MiloV, AmbrogioS, et al., 2017. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Scientific Reports, 7(1):5288.

[45]PhamVT, JafariS, VaidyanathanS, et al., 2016. A novel memristive neural network with hidden attractors and its circuitry implementation. Science China Technological Sciences, 59(3):358-363.

[46]PhamVT, VelichkoA, van HuynhV, et al., 2024. Analysis of memristive maps with asymmetry. Integration, 94:102110.

[47]RamadossJ, OuannasA, TambaVK, et al., 2022. Constructing non-fixed-point maps with memristors. The European Physical Journal Plus, 137(2):211.

[48]RamakrishnanB, MehrabbeikM, ParasteshF, et al., 2022. A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics, 11(1):153.

[49]RenLJ, MouJ, BanerjeeS, et al., 2023. A hyperchaotic map with a new discrete memristor model: design, dynamical analysis, implementation and application. Chaos, Solitons & Fractals, 167:113024.

[50]ShatnawiMT, KhennaouiAA, OuannasA, et al., 2023. A multistable discrete memristor and its application to discrete-time Fitzhugh–Nagumo model. Electronics, 12(13):2929.

[51]SmagulovaK, JamesAP, 2019. A survey on LSTM memristive neural network architectures and applications. The European Physical Journal Special Topics, 228(10):‍2313-2324.

[52]SunJW, YangJL, LiuP, et al., 2023. Design of general flux-controlled and charge-controlled memristor emulators based on hyperbolic functions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(3):956-967.

[53]VigneshD, MaJ, BanerjeeS, 2024. Multi-scroll and coexisting attractors in a Hopfield neural network under electromagnetic induction and external stimuli. Neurocomputing, 564:126961.

[54]WangZR, JoshiS, Savel’evS, et al., 2018. Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics, 1(2):137-145.

[55]WuFQ, YaoZ, 2023. Dynamics of neuron-like excitable Josephson junctions coupled by a metal oxide memristive synapse. Nonlinear Dynamics, 111(14):13481-13497.

[56]WuFQ, GuoYT, MaJ, 2022. Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dynamics, 109(3):2063-2084.

[57]WuFQ, GuoYT, MaJ, 2023. Energy flow accounts for the adaptive property of functional synapses. Science China Technological Sciences, 66(11):3139-3152.

[58]XieY, YaoZ, MaJ, 2023. Formation of local heterogeneity under energy collection in neural networks. Science China Technological Sciences, 66(2):439-455.

[59]XuQ, LinY, BaoBC, et al., 2016. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos, Solitons & Fractals, 83:186-200.

[60]XuQ, HuangLP, WangN, et al., 2023. Initial-offset-boosted coexisting hyperchaos in a 2D memristive Chialvo neuron map and its application in image encryption. Nonlinear Dynamics, 111(21):20447-20463.

[61]YangFF, WangY, MaJ, 2023a. Creation of heterogeneity or defects in a memristive neural network under energy flow. Communications in Nonlinear Science and Numerical Simulation, 119:107127.

[62]YangFF, RenGD, TangJ, 2023b. Dynamics in a memristive neuron under an electromagnetic field. Nonlinear Dynamics, 111(23):21917-21939.

[63]YangFF, XuY, MaJ, 2023c. A memristive neuron and its adaptability to external electric field. Chaos: an Interdisciplinary Journal of Nonlinear Science, 33(2):023110.

[64]YeXL, WangXY, GaoS, et al., 2020. A new chaotic circuit with multiple memristors and its application in image encryption. Nonlinear Dynamics, 99(2):1489-1506.

[65]YuY, FanYB, HanF, et al., 2023. Transcranial direct current stimulation inhibits epileptic activity propagation in a large-scale brain network model. Science China Technological Sciences, 66(12):3628-3638.

[66]Zandi-MehranN, PanahiS, HosseiniZ, et al., 2020. One dimensional map-based neuron model: a phase space interpretation. Chaos, Solitons & Fractals, 132:109558.

[67]ZhaoY, DingJF, HeSB, et al., 2023. Fully fixed-point integrated digital circuit design of discrete memristive systems. AEU-International Journal of Electronics and Communications, 161:154522.

[68]ZhongHY, LiGD, XuXL, 2022. A generic voltage-controlled discrete memristor model and its application in chaotic map. Chaos, Solitons & Fractals, 161:112389.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE