Full Text:   <2402>

Summary:  <1174>

CLC number: TP309.7

On-line Access: 2018-04-09

Received: 2016-06-17

Revision Accepted: 2017-01-23

Crosschecked: 2018-02-15

Cited: 0

Clicked: 5245

Citations:  Bibtex RefMan EndNote GB/T7714


Rodrigo Méndez-Ramírez


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.2 P.165-179


Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation

Author(s):  Rodrigo Méndez-Ramírez, Adrian Arellano-Delgado, César Cruz-Hernández, Fausto Abundiz-Pérez, Rigoberto Martínez-Clark

Affiliation(s):  Electronics and Telecommunications Department, Scientific Research and Advanced Studies Center of Ensenada, Ensenada 22860, Mexico; more

Corresponding email(s):   ccruz@cicese.mx

Key Words:  Chaotic systems, Statistical tests, Embedded systems, dsPIC microcontroller, Serial peripheral interface (SPI) protocol

Rodrigo Méndez-Ramírez, Adrian Arellano-Delgado, César Cruz-Hernández, Fausto Abundiz-Pérez, Rigoberto Martínez-Clark. Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(2): 165-179.

@article{title="Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation",
author="Rodrigo Méndez-Ramírez, Adrian Arellano-Delgado, César Cruz-Hernández, Fausto Abundiz-Pérez, Rigoberto Martínez-Clark",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation
%A Rodrigo Méndez-Ramírez
%A Adrian Arellano-Delgado
%A César Cruz-Hernández
%A Fausto Abundiz-Pérez
%A Rigoberto Martínez-Clark
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 2
%P 165-179
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601346

T1 - Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation
A1 - Rodrigo Méndez-Ramírez
A1 - Adrian Arellano-Delgado
A1 - César Cruz-Hernández
A1 - Fausto Abundiz-Pérez
A1 - Rigoberto Martínez-Clark
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 2
SP - 165
EP - 179
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601346

The current massive use of digital communications demands a secure link by using an embedded system (ES) with data encryption at the protocol level. The serial peripheral interface (SPI) protocol is commonly used by manufacturers of ESs and integrated circuits for applications in areas such as wired and wireless communications. We present the design and experimental implementation of a chaotic encryption and decryption algorithm applied to the SPI communication protocol. The design of the chaotic encryption algorithm along with its counterpart in the decryption is based on the chaotic Hénon map and two methods for blur and permute (in combination with DNA sequences). The SPI protocol is configured in 16 bits to synchronize a transmitter and a receiver considering a symmetric key. Results are experimentally proved using two low-cost dsPIC microcontrollers as ESs. The SPI digital-to-analog converter is used to process, acquire, and reconstruct confidential messages based on its properties for digital signal processing. Finally, security of the cryptogram is proved by a statistical test. The digital processing capacity of the algorithm is validated by dsPIC microcontrollers.


概要:当前数字通信的大规模使用需要嵌入式系统(embedded system,ES)和协议级数据加密来实现安全连接。串行外设接口(serial peripheral interface,SPI)协议被ES和集成电路制造商广泛应用于有线和无线通信等领域。提出一种应用于SPI通信协议的混沌加密和解密算法的设计及其实验实现。混沌加密算法及对应解密算法的设计基于混沌Hénon映射和两种模糊和排列方法(结合DNA序列)。考虑到对称密钥,SPI协议采用16位配置作为同步发射机和接收机。使用两个低成本dsPIC微控制器作为ES,设计结果得到实验验证。基于其数字信号处理属性,SPI数模转换器被用于处理、获取和重构机密消息。最后,统计检验证明了加密的安全性。该算法数字处理能力得到dsPIC微控制器验证。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Aguilar-Bustos AY, Cruz-Hernández C, López-Gutiérrez RM, et al., 2010. Hyperchaotic encryption for secure e-mail communication. In: Chbeir R, Badr Y, Abraham A, et al. (Eds.), Emergent Web Intelligence: Advanced Information Retrieval. Springer, London, p.471-486.

[2]Alvarez G, Li SJ, 2006. Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos, 16(8):2129-2151.

[3]Arellano-Delgado A, López-Gutiérrez RM, Cruz-Hernández C, et al., 2012. Experimental network synchronization via plastic optical fiber. Opt Fiber Technol, 19(12):93-108.

[4]Azzaz MS, Tanougast C, Sadoudi S, et al., 2013. A new auto-switched chaotic system and its FPGA implementation. Commun Nonl Sci Numer Simul, 18(7):1792-1804.

[5]Barr M, Massa A, 2006. Programming Embedded Systems: with C and GNU Development Tools (2nd Ed.). O’Reilly Media, Cambridge, USA, p.18-20, 240-242.

[6]Benson D, Cavanaugh M, Clark K, et al., 2013. GenBank. Nucl Acids Res, 41:D36-D42.

[7]Cornish-Bowden A, 1985. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucl Acids Res, 13(9):3021-3030.

[8]Demosthenous A, Pachnis I, Jiang D, et al., 2013. An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles. IEEE Sens J, 13(9):3236-3248.

[9]Fúster Sabater A, Hernández Encinas L, Martín Muñoz A, et al., 2012. Criptografía, Protección de Datos Y Aplicaciones: Guía Para Estudiantes Y Profesionales. RA-MA, Madrid, Spain, p.133-157 (in Spanish).

[10]Guglielmi V, Pinel P, Fournier-Prunaret D, et al., 2009. Chaos-based cryptosystem on DSP. Chaos Sol Fract, 42(4):2135-2144.

[11]Hénon M, 1976. A two-dimensional mapping with a strange attractor. Commun Math Phys, 50(1):69-77.

[12]Jasio LD, 2008. Programming 32-Bit Microcontrollers in C: Exploring the PIC32. Newnes, Burlington, USA.

[13]Jyothi M, Chandra LR, Sahithi M, et al., 2012. Implementation of low complex and high secured SPI communication system for multipurpose applications. Int J Comput Sci Inform Technol, 3(1):3214-3219.

[14]Leens F, 2009. An introduction to I2C and SPI protocols. IEEE Instrum Meas Mag, 12(1):8-13.

[15]Li LL, Liu Y, Yao QG, 2014. Robust synchronization of chaotic systems using slidingmode and feedback control. J Zhejiang Univ-Sci C (Comput & Electron), 15(3):211-222.

[16]Liu WH, Sun KH, Zhu CX, 2016. A fast image encryption algorithm based on chaotic map. Opt Lasers Eng, 84:26-36.

[17]Marinkovic SJ, Popovici EM, 2011. Nano-power wireless wake-up receiver with serial peripheral interface. IEEE J Sel Areas Commun, 29(8):1641-1647.

[18]Méndez-Ramírez R, Cruz-Hernández C, Arellano-Delgado A, et al., 2015. Implementación del Circuito Hipercaótico de Chua en un Sistema Embebido de Bajo Costo. http://amca.mx/memorias/amca2015/articulos/0032_MiBT3-04.pdf [Accessed on Nov. 10, 2016] (in Spanish).

[19]Menezes AJ, van Oorschot PC, Vanstone SA, 1996. Handbook of Applied Cryptography. CRC Press, Boca Raton, USA.

[20]Microchip Technology Inc., 1997. IEEE 754 Compliant Floating Point Routines. http://www.microchip.com/ stellent/groups/techpub_sg/documents/appnotes/cn01096 1.pdf [Accessed on Mar. 21, 2018].

[21]Microchip Technology Inc., 2004. dsPIC30F3014, dsPIC30F4013 Data Sheet. http://ww1.microchip.com/ downloads/en/devicedoc/70138c.pdf [Accessed on Nov. 10, 2016].

[22]Microchip Technology Inc., 2006. AN1044 Data Encryption Routines for PIC24 and dsPIC® Devices. http://ww1.microchip.com/downloads/en/AppNotes/AN1044a.pdf [Accessed on Nov. 10, 2016].

[23]Microchip Technology Inc., 2018. Encryption Routines for PIC24, dsPIC, and PIC32. http://www.microchip.com/ SWLibraryWeb/product.aspx?product=Encryption%20R outines [Accessed on Mar. 21, 2018].

[24]Mikroelectronika, 2014. MikroC Pro for dsPIC Manual. http://download.mikroe.com/documents/compilers/mikroc/dspic/mikroc-dspic-manual-v100.pdf [Accessed on Mar. 21, 2018].

[25]Motorola Inc., 2003. SPI Block Guide V03.06. https://opencores.org/usercontent,doc,1499360489 [Accessed on Mar. 21, 2018].

[26]Muhaya FB, Usama M, Khan MK, 2009. Modified AES using chaotic key generator for satellite imagery encryption. In: Huang DS, Jo KH, Lee HH, et al. (Eds.), Emerging Intelligent Computing Technology and Applications. Springer, Berlin Heidelberg, p.1014-1024.

[27]Murillo-Escobar MÁ, Cruz-Hernández C, Abúndiz-Pérez F, et al., 2015a. A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process, 109:119-131.

[28]Murillo-Escobar MÁ, Cruz-Hernández C, Abúndiz-Pérez F, et al., 2015b. A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Exp Syst Appl, 42(21):8198-8211.

[29]Nyquist H, 1928. Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng, 47(2):617-644.

[30]Oudjida AK, Berrandjia ML, Tiar R, et al., 2009. FPGA implementation of I2C & SPI protocols: a comparative study. 16th IEEE Int Conf on Electronics, Circuits, and Systems, p.507-510.

[31]Philips Semiconductors, 1995. The I²C-bus and how to use it. http://www.i2cbus.org/fileadmin/ftp/i2c_bus_specification_1995.pdf [Accessed on Nov. 10, 2016].

[32]Philips Semiconductors, 2003. AN10216-01 I²C Manual. http://www.nxp.com/documents/application_note/AN10216.pdf [Accessed on Nov. 10, 2016].

[33]Rhouma R, Belghith S, 2011. Cryptanalysis of a chaos-based cryptosystem on DSP. Commun Nonl Sci Numer Simul, 16(2):876-884.

[34]Shannon CE, 1949. Communication in the presence of noise. Proc IRE, 37(1):10-21.

[35]Siddiqui RA, Grosvenor RI, Prickett PW, 2015. dsPIC-based advanced data acquisition system for monitoring, control and security applications. 12th Int Bhurban Conf on Applied Sciences and Technology, p.293-298.

[36]Sipser M, 2006. Introduction to the Theory of Computation (2nd Ed.). Thomson Course Technology, Boston, USA.

[37]Tumenjargal E, Badarch L, Kwon H, et al., 2013. Embedded software and hardware implementation system for a human machine interface based on ISOAgLib. J Zhejiang Univ-Sci C (Comput & Electron), 14(3):155-166.

[38]Uriz AJ, Agüero PD, Moreira JC, et al., 2016. Flexible pseudorandom number generator for tinnitus treatment implemented on a dsPIC. IEEE Latin Am Trans, 14(1):72-77.

[39]Yalcin ME, Suykens JAK, Vandewalle J, 2004. True random bit generation from a double-scroll attractor. IEEE Trans Circ Syst I, 51(7):1395-1404.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE