Full Text:   <1550>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-10-25

Received: 2024-10-24

Revision Accepted: 2025-01-16

Crosschecked: 2025-10-27

Cited: 0

Clicked: 1265

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Man YAO

https://orcid.org/0000-0002-7322-9258

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.10 P.1010-1020

http://doi.org/10.1631/jzus.A2400503


Electrostatic potential distribution image-transfer learning method for highly accurate prediction of lithium diffusion barriers on transition metal dichalcogenide surfaces


Author(s):  Jian CHEN, Yao KANG, Xudong WANG, Hao HUANG, Man YAO

Affiliation(s):  School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; more

Corresponding email(s):   yaoman@dlut.edu.cn

Key Words:  Transition metal dichalcogenide (TMD), Deep learning, Transfer learning, Electrostatic potential, Lithium-diffusion


Share this article to: More <<< Previous Article|

Jian CHEN, Yao KANG, Xudong WANG, Hao HUANG, Man YAO. Electrostatic potential distribution image-transfer learning method for highly accurate prediction of lithium diffusion barriers on transition metal dichalcogenide surfaces[J]. Journal of Zhejiang University Science A, 2025, 26(10): 1010-1020.

@article{title="Electrostatic potential distribution image-transfer learning method for highly accurate prediction of lithium diffusion barriers on transition metal dichalcogenide surfaces",
author="Jian CHEN, Yao KANG, Xudong WANG, Hao HUANG, Man YAO",
journal="Journal of Zhejiang University Science A",
volume="26",
number="10",
pages="1010-1020",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400503"
}

%0 Journal Article
%T Electrostatic potential distribution image-transfer learning method for highly accurate prediction of lithium diffusion barriers on transition metal dichalcogenide surfaces
%A Jian CHEN
%A Yao KANG
%A Xudong WANG
%A Hao HUANG
%A Man YAO
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 10
%P 1010-1020
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400503

TY - JOUR
T1 - Electrostatic potential distribution image-transfer learning method for highly accurate prediction of lithium diffusion barriers on transition metal dichalcogenide surfaces
A1 - Jian CHEN
A1 - Yao KANG
A1 - Xudong WANG
A1 - Hao HUANG
A1 - Man YAO
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 10
SP - 1010
EP - 1020
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400503


Abstract: 
Calculating the inter-layer ion diffusion barrier, a crucial metric for evaluating the rate performance of 2D electrode materials, is time-consuming using the transition state search approach. A novel electrostatic potential distribution image (EPDI) transfer learning method has been proposed to efficiently and accurately predict the lithium diffusion barriers on metal element-doped transition metal dichalcogenide (TMD) surfaces. Through the analysis of the mean electrostatic potential (MEP) around binding sites, a positive correlation between binding energy and MEP in VIB-TMDs was identified. Subsequently, transfer learning techniques were used to develop a DenseNet121-TL model for establishing a more accurate mapping between the binding energy and electrostatic potential distribution. Trained on training sets containing 33% and 50% transition state search calculation results, which save 66% and 50% of the calculation time, respectively, the model achieves accurate predictions of the saddle point binding energy with mean absolute errors (MAEs) of 0.0444 and 0.0287 eV on the testing set. Based on the prediction of saddle point binding energies, we obtained a diffusion minimum energy profile with an MAE of 0.0235 eV. Furthermore, by analyzing the diffusion data, we observed that the diffusion barrier was lowered by 10% on V-doped TiS2 compared to the stoichiometric surface. Our findings are expected to provide new insights for the high-throughput calculation of ion diffusion on 2D materials.

基于静电势分布图像迁移学习的过渡金属硫族化物表面锂扩散势垒高精度预测方法

作者:陈健1,2,康瑶1,2,王旭东1,2,黄昊1,姚曼1,2
机构:1大连理工大学,材料科学与工程学院,中国大连,116024;2大连理工大学,辽宁省凝固控制与数字化制备技术重点实验室,中国大连,116024
目的:表面锂扩散势垒是评价二维电极材料倍率性能的关键参数之一。基于过渡态搜索的扩散势垒计算方法是一种广泛使用但计算耗时的方法。本文以金属元素掺杂的二维过渡金属硫化物为研究对象,旨在借助卷积神经网络和迁移学习技术构建局部表面静电势分布图像与锂结合能的映射关系,以此实现表面锂扩散势能曲线的高效准确预测。
创新点:基于卷积神经网络的可迁移性,借助用于图像识别的深度学习模型,构建了局部表面静电势分布图像与锂结合能的映射关系,并以此实现了锂扩散路径上势能曲线的高效预测。
方法:1.通过基于密度泛函理论的第一性原理计算,揭示金属元素掺杂VIB族过渡金属硫化物表面的局部静电势均值与锂结合能的强正相关性;2.针对金属元素掺杂IVB、VB和VIB族过渡金属硫化物构建局部静电势图像及锂结合能数据库,借助迁移学习方法搭建多种深度学习模型,调参优化训练模型,并对比训练后不同模型预测效果的差异性;3.选取最优模型,调节训练集中过渡态计算数据的数量,预测不同锂扩散路径上的势能曲线,并对比过渡态搜索方法,验证EPDI-迁移学习方法的高预测精度和低耗时性。
结论:1.金属元素掺杂VIB族过渡金属硫化物表面的局部静电势均值与锂结合能呈现强正相关性。2.借助迁移学习技术的DenseNet121-TL模型能够实现鞍点结合能的准确预测;当训练集包含33%的鞍点结合能数据时,对其余鞍点结合能的平均绝对预测误差为0.0444 eV。3.利用对鞍点结合能的预测实现了锂扩散路径上势能曲线的高效预测。

关键词:过渡金属硫族化物;深度学习;迁移学习;静电势;锂扩散

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AhmedM, LiY, ChenWC, et al., 2020. Diffusion barrier prediction of graphene and boron nitride for copper interconnects by deep learning. IEEE Access, 8:210542-210549.

[2]BahariY, MortazaviB, RajabpourA, et al., 2021. Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: a comprehensive perspective from density functional theory simulations. Energy Storage Materials, 35:203-282.

[3]BlöchlPE, 1994. Projector augmented-wave method. Physical Review B, 50(24):17953-17979.

[4]ChaneyG, IbrahimA, ErsanF, et al., 2021. Comprehensive study of lithium adsorption and diffusion on janus Mo/WXY (X, Y=S, Se, Te) using first-principles and machine learning approaches. ACS Applied Materials & Interfaces, 13(30):36388-36406.

[5]ChangJH, JørgensenPB, LoftagerS, et al., 2021. On-the-fly assessment of diffusion barriers of disordered transition metal oxyfluorides using local descriptors. Electrochimica Acta, 388:138551.

[6]ChenC, YeWK, ZuoYX, et al., 2019. Graph networks as a universal machine learning framework for molecules and crystals. Chemistry of Materials, 31(9):3564-3572.

[7]DasS, PeguH, SahuKK, et al., 2020. 19-machine learning in materials modeling—fundamentals and the opportunities in 2D materials. In: Yang EH, Datta D, Ding JJ (Eds.), Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures. Elsevier, p.445-468.

[8]DongXC, LiHW, JiangZT, et al., 2021. 3D deep learning enables accurate layer mapping of 2D materials. ACS Nano, 15(2):3139-3151.

[9]DongY, WuCH, ZhangC, et al., 2019. Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. npj Computational Materials, 5(1):26.

[10]GiebelerL, BalachJ, 2021. Mxenes in lithium–sulfur batteries: scratching the surface of a complex 2D material–a minireview. Materials Today Communications, 27:102323.

[11]GrimmeS, AntonyJ, EhrlichS, et al., 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15):154104.

[12]HaastrupS, StrangeM, PandeyM, et al., 2018. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials, 5(4):042002.

[13]HeKM, ZhangXY, RenSQ, et al., 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.770-778.

[14]HenkelmanG, JónssonH, 2000. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22):9978-9985.

[15]HuangG, LiuZ, van der MaatenL, et al., 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.2261-2269.

[16]KabirajA, MahapatraS, 2022. High-throughput assessment of two-dimensional electrode materials for energy storage devices. Cell Reports Physical Science, 3(1):100718.

[17]KangYQ, LiLJ, LiBH, 2021. Recent progress on discovery and properties prediction of energy materials: simple machine learning meets complex quantum chemistry. Journal of Energy Chemistry, 54:72-88.

[18]KresseG, FurthmüllerJ, 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169-11186.

[19]LangrethDC, MehlMJ, 1983. Beyond the local-density approximation in calculations of ground-state electronic properties. Physical Review B, 28(4):1809-1834.

[20]LeeSJ, TheerthagiriJ, NithyadharseniP, et al., 2021. Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renewable and Sustainable Energy Reviews, 143:110849.

[21]LeistC, HeM, LiuX, et al., 2022. Deep-learning pipeline for statistical quantification of amorphous two-dimensional materials. ACS Nano, 16(12):20488-20496.

[22]LiWW, AndoY, MinamitaniE, et al., 2017. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential. The Journal of Chemical Physics, 147(21):214106.

[23]LiuF, FanZX, 2023. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chemical Society Reviews, 52(5):1723-1772.

[24]LiuHP, LeiW, TongZM, et al., 2020. Defect engineering of 2D materials for electrochemical energy storage. Advanced Materials Interfaces, 7(15):2000494.

[25]LiuY, WuJM, AvdeevM, et al., 2020. Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties. Advanced Theory and Simulations, 3(2):1900215.

[26]LuGM, WitmanM, AgarwalS, et al., 2023. Explainable machine learning for hydrogen diffusion in metals and random binary alloys. Physical Review Materials, 7(10):105402.

[27]MasubuchiS, WatanabeE, SeoY, et al., 2020. Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. npj 2D Materials and Applications, 4(1):3.

[28]MommaK, IzumiF, 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272-1276.

[29]PaszkeA, GrossS, MassaF, et al., 2019. PyTorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A (Eds.), Advances in Neural Information Processing Systems, 32. Curran Associates, p.8024-8035.

[30]PerdewJP, BurkeK, ErnzerhofM, 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865-3868.

[31]RyuB, WangLQ, PuHH, et al., 2022. Understanding, discovery, and synthesis of 2D materials enabled by machine learning. Chemical Society Reviews, 51(6):1899-1925.

[32]SendekAD, YangQ, CubukED, et al., 2017. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy & Environmental Science, 10(1):306-320.

[33]ShaoQJ, WuZS, ChenJ, 2019. Two-dimensional materials for advanced Li-S batteries. Energy Storage Materials, 22:284-310.

[34]SimonyanK, ZissermanA, 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.

[35]TanCQ, SunFC, KongT, et al., 2018. A survey on deep transfer learning. The 27th International Conference on Artificial Neural Networks and Machine Learning, p.270-279.

[36]TheerthagiriJ, LeeSJ, KaruppasamyK, et al., 2021. Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. Journal of Hazardous Materials, 412:125245.

[37]TheerthagiriJ, ParkJ, DasHT, et al., 2022a. Electrocatalytic conversion of nitrate waste into ammonia: a review. Environmental Chemistry Letters, 20(5):2929-2949.

[38]TheerthagiriJ, KaruppasamyK, LeeSJ, et al., 2022b. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light: Science & Applications, 11(1):250.

[39]WangGY, FearnT, WangTY, et al., 2021. Machine-learning approach for predicting the discharging capacities of doped lithium nickel–cobalt–manganese cathode materials in Li-ion batteries. ACS Central Science, 7(9):1551-1560.

[40]WangRH, LiMH, SunKW, et al., 2022. Element-doped mxenes: mechanism, synthesis, and applications. Small, 18(25):2201740.

[41]WangXG, MengLJ, LiBX, et al., 2021. Heteroatoms/molecules to tune the properties of 2D materials. Materials Today, 47:108-130.

[42]WangXL, XiaoRJ, LiH, et al., 2017. Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis. Journal of Materiomics, 3(3):178-183.

[43]WuY, YuY, 2019. 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Materials, 16:323-343.

[44]XieT, GrossmanJC, 2018. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 120(14):145301.

[45]YosinskiJ, CluneJ, BengioY, et al., 2014. How transferable are features in deep neural networks? Proceedings of the 28th International Conference on Neural Information Processing Systems, Volume 2, p.3320-3328.

[46]ZhanC, SunWW, XieY, et al., 2019. Computational discovery and design of mxenes for energy applications: status, successes, and opportunities. ACS Applied Materials & Interfaces, 11(28):24885-24905.

[47]ZhangWS, LiuSY, ChenJ, et al., 2021. Exploring the potentials of Ti3CiN2–iTx (i=0, 1, 2)-mxene for anode materials of high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 13(19):22341-22350.

[48]ZhangXY, ZhouJ, LuJ, et al., 2022. Interpretable learning of voltage for electrode design of multivalent metal-ion batteries. npj Computational Materials, 8(1):175.

[49]ZhangYQ, TaoL, XieC, et al., 2020. Defect engineering on electrode materials for rechargeable batteries. Advanced Materials, 32(7):1905923.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE