Full Text:   <690>

Summary:  <115>

CLC number: TP311;U495

On-line Access: 2025-02-10

Received: 2023-08-23

Revision Accepted: 2023-12-11

Crosschecked: 2025-02-18

Cited: 0

Clicked: 1387

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhenyi XU

https://orcid.org/0000-0002-5804-882X

Binkun LIU

https://orcid.org/0000-0002-6812-876X

Yang CAO

https://orcid.org/0000-0002-2891-4379

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.1 P.79-92

http://doi.org/10.1631/FITEE.2300571


Transfer learning with a spatiotemporal graph convolution network for city flow prediction


Author(s):  Binkun LIU, Yu KANG, Yang CAO, Yunbo ZHAO, Zhenyi XU

Affiliation(s):  Department of Automation, University of Science and Technology of China, Hefei 230026, China; more

Corresponding email(s):   forrest@ustc.edu.cn, xuzhenyi@mail.ustc.edu.cn

Key Words:  Transfer learning, City flow prediction, Spatiotemporal graph convolution


Binkun LIU, Yu KANG, Yang CAO, Yunbo ZHAO, Zhenyi XU. Transfer learning with a spatiotemporal graph convolution network for city flow prediction[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(1): 79-92.

@article{title="Transfer learning with a spatiotemporal graph convolution network for city flow prediction",
author="Binkun LIU, Yu KANG, Yang CAO, Yunbo ZHAO, Zhenyi XU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="1",
pages="79-92",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300571"
}

%0 Journal Article
%T Transfer learning with a spatiotemporal graph convolution network for city flow prediction
%A Binkun LIU
%A Yu KANG
%A Yang CAO
%A Yunbo ZHAO
%A Zhenyi XU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 1
%P 79-92
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300571

TY - JOUR
T1 - Transfer learning with a spatiotemporal graph convolution network for city flow prediction
A1 - Binkun LIU
A1 - Yu KANG
A1 - Yang CAO
A1 - Yunbo ZHAO
A1 - Zhenyi XU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 1
SP - 79
EP - 92
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300571


Abstract: 
Recently, deep learning based city flow prediction has been extensively used in the establishment of smart cities. These methods are data-hungry, making them unscalable to areas lacking data. Although transfer learning can use data-rich source domains to assist target domain cities in city flow prediction, the performance of existing methods cannot meet the needs of actual use, because the long-distance road network connectivity is ignored. To solve this problem, we propose a transfer learning method based on spatiotemporal graph convolution, in which we construct a co-occurrence space between the source and target domains, and then align the mapping of the source and target domains’ data in this space, to achieve the transfer learning of the source city flow prediction model on the target domain. Specifically, a dynamic spatiotemporal graph convolution module along with a temporal encoder is devised to simultaneously capture the concurrent spatiotemporal features, which implies the inherent relationship among the road network structures, human travel habits, and city bike flow. Then, these concurrent features are leveraged as cross-city invariant representations and nonlinearly spanned to a co-occurrence space. The target domain features are thereby aligned with the source domain features in the co-occurrence space by using a Mahalanobis distance loss, to achieve cross-city bike flow prediction. The proposed method is evaluated on the public bike flow datasets in Chicago, New York, and Washington in 2015, and significantly outperforms state-of-the-art techniques.

基于时空图卷积的城市流迁移预测

刘斌琨1,2,3,康宇1,3,4,曹洋1,3,4,赵云波1,3,4,许镇义2,3,4
1中国科学技术大学自动化系,中国合肥市,230026
2系统控制与信息处理教育部重点实验室,中国上海市,200240
3合肥综合性国家科学中心人工智能研究院,中国合肥市,230088
4中国科学技术大学先进技术研究院,中国合肥市,230088
摘要:最近,基于深度学习的城市流量预测被广泛应用于智慧城市的建设。由于这些方法通常对数据量要求较高,因此难以扩展到数据匮乏的城市。虽然迁移学习可以利用数据丰富的源城市协助目标城市进行城市流量预测,但由于忽略了长距离路网的连通性,因此现有方法的性能无法满足实际使用的需要。为解决这个问题,提出一种基于时空图卷积的迁移预测方法,即在源城市和目标城市之间构建一个共现空间,然后在共现空间中对源城市和目标城市流量数据进行映射对齐,从而实现源城市流量预测模型在目标城市上的迁移预测。具体来说,我们设计了一个动态时空图卷积模块和一个时间编码器,以同时捕捉流量的时间特征和空间特征,这些特征揭示了道路网络结构、人类出行习惯和城市流量之间的内在关联。然后,将这些特征作为跨城市不变表示被非线性映射到共现空间。通过优化马氏距离损失,目标城市特征与源城市特征在共现空间中对齐,从而实现跨城市自行车流量预测。在2015年芝加哥、纽约和华盛顿的公共自行车流量数据集上对所提出的方法进行评估,结果表明该方法明显优于目前最先进的技术。

关键词:迁移学习;城市流预测;时空图卷积

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmed MS, Cook AR, 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transp Res Rec, 773(722):1-9.

[2]De Maesschalck R, Jouan-Rimbaud D, Massart DL, 2000. The Mahalanobis distance. Chemom Intell Lab Syst, 50(1):1-18.

[3]Guo SN, Lin YF, Feng N, et al., 2019. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. 33rd AAAI Conf on Artificial Intelligence, p.922-929.

[4]He ZW, Li Y, Zhang Y, et al., 2023. Ensemble-transfer-learning-based channel parameter prediction in asymmetric massive MIMO systems. Front Inform Technol Electron Eng, 24(2):275-288.

[5]Hu J, Lin XH, Wang C, 2022. DSTGCN: dynamic spatial-temporal graph convolutional network for traffic prediction. IEEE Sens J, 22(13):13116-13124.

[6]Huang DR, Deng ZP, Zhao L, et al., 2017. A short-term traffic flow forecasting method based on Markov chain and grey Verhulst model. 6th Data Driven Control and Learning Systems, p.606-610.

[7]Huang YJ, Song XZ, Zhang SY, et al., 2021. Transfer learning in traffic prediction with graph neural networks. IEEE Int Intelligent Transportation Systems Conf, p.3732-3737.

[8]Kang GK, Gao JZ, Chiao S, et al., 2018. Air quality prediction: big data and machine learning approaches. Int J Environ Sci Dev, 9(1):8-16.

[9]Li JY, Guo FC, Wang YB, et al., 2020. Short-term traffic prediction with deep neural networks and adaptive transfer learning. IEEE 23rd Int Conf on Intelligent Transportation Systems, p.1-6.

[10]Lippi M, Bertini M, Frasconi P, 2010. Collective traffic forecasting. European Conf on Machine Learning and Knowledge Discovery in Databases, p.259-273.

[11]Liu J, Guan W, 2004. A summary of traffic flow forecasting methods. J Highway Transp Res Devel, 21(3):82-85.

[12]Lv YS, Duan YJ, Kang WW, et al., 2015. Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst, 16(2):865-873.

[13]Ma XL, Dai Z, He ZB, et al., 2017. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17(4):818.

[14]Mallick T, Balaprakash P, Rask E, et al., 2019. Graph-partitioning-based diffusion convolutional recurrent neural network for large-scale traffic forecasting. Transp Res Rec, 2674(9):473-488.

[15]Mallick T, Balaprakash P, Rask E, et al., 2021. Transfer learning with graph neural networks for short-term highway traffic forecasting. 25th Int Conf on Pattern Recognition, p.10367-10374.

[16]Miao H, Shen JX, Cao JN, et al., 2023. MBA-STNet: Bayes-enhanced discriminative multi-task learning for flow prediction. IEEE Trans Knowl Data Eng, 35(7):7164-7177.

[17]Peng H, Wang HF, Du BW, et al., 2020. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting. Inform Sci, 521:277-290.

[18]Seng DW, Lv FS, Liang ZY, et al., 2021. Forecasting traffic flows in irregular regions with multi-graph convolutional network and gated recurrent unit. Front Inform Technol Electron Eng, 22(9):1179-1193.

[19]Shao W, Jin ZL, Wang S, et al., 2022. Long-term spatio-temporal forecasting via dynamic multiple-graph attention. 31st Int Joint Conf on Artificial Intelligence, p.2225-2232.

[20]Shao ZZ, Zhang Z, Wang F, et al., 2022. Spatial-temporal identity: a simple yet effective baseline for multivariate time series forecasting. Proc 31st ACM Int Conf on Information & Knowledge Management, p.4454-4458.

[21]Smola AJ, Schölkopf B, 2004. A tutorial on support vector regression. Stat Comput, 14(3):199-222.

[22]Tascikaraoglu A, 2018. Evaluation of spatio-temporal forecasting methods in various smart city applications. Renew Sustain Energy Rev, 82:424-435.

[23]Van Der Voort M, Dougherty M, Watson S, 1996. Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transp Res Part C Emerg Technol, 4(5):307-318.

[24]Wang B, Yan Z, Lu J, et al., 2018. Road traffic flow prediction using deep transfer learning. Proc 13th Int FLINS Conf, p.331-338.

[25]Wang BW, Wang JS, 2022. ST-MGAT: spatio-temporal multi-head graph attention network for traffic prediction. Phys A, 603:127762.

[26]Wang LY, Geng X, Ma XJ, et al., 2019. Cross-city transfer learning for deep spatio-temporal prediction. Proc 28th Int Joint Conf on Artificial Intelligence, p.1893-1899.

[27]Wang SZ, Miao H, Li JY, et al., 2022. Spatio-temporal knowledge transfer for urban crowd flow prediction via deep attentive adaptation networks. IEEE Trans Intell Transp Syst, 23(5):4695-4705.

[28]Williams BM, Hoel LA, 2003. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J Transp Eng, 129(6):664-672.

[29]Xiang SM, Nie FP, Zhang CS, 2008. Learning a Mahalanobis distance metric for data clustering and classification. Patt Recog, 41(12):3600-3612.

[30]Xu ZY, Kang Y, Cao Y, 2023. High-resolution urban flows forecasting with coarse-grained spatiotemporal data. IEEE Trans Artif Intell, 4(2):315-327.

[31]Yao ZX, Xia SC, Li Y, et al., 2023. Transfer learning with spatial-temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst, 24(8):8592-8605.

[32]Yu B, Yin HT, Zhu ZX, 2018. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. Proc 27th Int Joint Conf on Artificial Intelligence, p.3634-3640.

[33]Zhao L, Song YJ, Zhang C, et al., 2020. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst, 21(9):3848-3858.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE