CLC number: S188
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-03-31
Cited: 7
Clicked: 5964
Yong Han, Xiao-li Jin, Fei-bo Wu, Guo-ping Zhang. Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.)[J]. Journal of Zhejiang University Science B, 2011, 12(5): 399-407.
@article{title="Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.)",
author="Yong Han, Xiao-li Jin, Fei-bo Wu, Guo-ping Zhang",
journal="Journal of Zhejiang University Science B",
volume="12",
number="5",
pages="399-407",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000219"
}
%0 Journal Article
%T Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.)
%A Yong Han
%A Xiao-li Jin
%A Fei-bo Wu
%A Guo-ping Zhang
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 5
%P 399-407
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000219
TY - JOUR
T1 - Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.)
A1 - Yong Han
A1 - Xiao-li Jin
A1 - Fei-bo Wu
A1 - Guo-ping Zhang
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 5
SP - 399
EP - 407
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000219
Abstract: An efficient induction system and regeneration protocol based on mature barley embryos were developed. Embryos isolated from mature seeds, dehusked by hand and inoculated with longitudinally bisected sections, showed low contamination and high primary callus-forming capability. The influences of nine culture media on primary callus induction and germination from the mature embryos of barley cultivars Golden Promise and Zaoshu 3 were analyzed. The results showed that the two cultivars had much higher values of primary callus induction in the B16M6D medium as compared to the other eight medium formulations, with a frequency of 74.3% and 78.4% for Golden Promise and Zaoshu 3, respectively. Furthermore, Zaoshu 3 demonstrated particularly high stability in callus induction over the different media, indicating its potential utilization in callus induction and regeneration for its good agronomic traits and wide adaption. There were significant differences amongst 11 barley genotypes in terms of primary callus induction in the optimum medium, with percentages of callus induction and germination response ranging from 17.9% to 78.4% and 2.8% to 47.4%, respectively. Green plantlets of Dong 17, Golden Promise, and Zaoshu 3 were successfully developed from primary calli through embryogenesis, with green plant differentiation frequencies ranging from 9.7% to 21.0% across genotypes.
[1]Akula, C., Akula, A., Henry, R., 1999. Improved regeneration efficiency from mature embryos of barley cultivars. Biol. Plant., 42(4):505-513.
[2]Becher, T., Haberland, G., Koop, H.U., 1992. Callus formation and plant regeneration in standard and microexplants from seedlings of barley (Hordeum vulgare L.). Plant Cell Rep., 11(1):39-43.
[3]Bi, R.M., Kou, M., Chen, L.G., Mao, S.R., Wang, H.G., 2007. Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breeding, 126(1):9-12.
[4]Bregitzer, P., Dahleen, L.S., Campbell, R.D., 1998. Enhancement of plant regeneration from callus of commercial barley cultivars. Plant Cell Rep., 17(12):941-945.
[5]Caligari, P.D.S., Powell, W., Goodall, V., 1987. The in vitro genetics of barley (Hordeum vulgare L.): genetical analysis of immature embryo response to 2,4-dichlorophenoxyacetic acid. Heredity, 59(2):285-292.
[6]Chauhan, H., Desai, S.A., Khurana, P., 2007. Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell Tiss. Org. Cult., 91(3):191-199.
[7]Chen, J.Y., Yue, R.Q., Xu, H.X., Chen, X.J., 2006. Study on plant regeneration of wheat mature embryos under endosperm-supported culture. Agric. Sci. China, 5(8):572-578.
[8]Cho, M.J., Yano, H., Okamoto, D., Kim, H.K., Jung, H.R., Newcomb, K., Le, V.K., Yoo, H.S., Langham, R., Buchanan, B.B., et al., 2004. Stable transformation of rice (Oryza sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed. Plant Cell Rep., 22(7):483-489.
[9]Chu, C.C., 1978. The N6 Medium and Its Applications to Anther Culture of Cereal Crops. In: Proceedings of the Symposium on Plant Tissue Culture. Science Press, Beijing, China, p.43-50.
[10]Chugh, A., Khurana, P., 2003. Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment. Plant Cell Tiss. Org. Cult., 74(2):151-161.
[11]Delporte, F., Mostade, O., Jacquemin, J.M., 2001. Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell Tiss. Org. Cult., 67(1):73-80.
[12]Ellis, R.P., Forster, B.P., Robinson, D., Handley, L.L., Gordon, D.C., Russell, J.R., Powell, W., 2000. Wild barley: a source of genes for crop improvement in the 21st century? J. Exp. Bot., 51(342):9-17.
[13]Gamborg, O.L., Miller, R.A., Ojima, K., 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res., 50(1):151-158.
[14]Ganeshan, S., Baga, M., Harvey, B.L., Rossnagel, B.G., Scoles, G.J., Chibbar, R.N., 2003. Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/ apical meristems of barley (Hordeum vulgare L.). Plant Cell Tiss. Org. Cult., 73(1):57-64.
[15]Goldman, J.J., Hanna, W.W., Fleming, G., Ozias-Akins, P., 2003. Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissue. Plant Cell Rep., 21(10):999-1009.
[16]He, T., Jia, J.F., 2008. High frequency plant regeneration from mature embryo explants of highland barley (Hordeum vulgare L. var. nudum Hk. f.) under endosperm-supported culture. Plant Cell Tiss. Org. Cult., 95(2):251-254.
[17]Holme, B.I., Brinch-Pedersen, H., Lange, M., Holm, P.B., 2006. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep., 25(12):1325-1335.
[18]Jähne, A., Becker, D., Brettschneider, R., Lörz, H., 1994. Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet., 89(4):525-533.
[19]Krishnamurthy, K.V., Suhasini, K., Sagare, A.P., Meixner, M., de Kathen, A., Pickardt, T., Schieder, O., 2000. Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep., 19(3):235-240.
[20]Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D., Loerz, H., 2006. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J., 4(2):251-261.
[21]Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15(3):473-497.
[22]Özgen, M., Birsin, M.A., Önde, S., 2005. The effect of hybrid vigor on callus induction and plant regeneration from mature embryo culture of barley (Hordeum vulgare). Plant Cell Tiss. Org. Cult., 82(1):67-74.
[23]Rengel, Z., 1987. Embryogenic callus induction and plant regeneration from cultured Hordeum vulgare mature embryos. Plant Physiol. Bilchem., 25:43-48.
[24]Repellin, A., Baga, M., Jauhar, P.P., Chibbar, R.N., 2001. Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tiss. Org. Cult., 64(2/3):159-183.
[25]Sahrawat, A.K., Chand, S., 2004. High frequency plant regeneration from coleoptile tissue of barley (Hordeum vulgare L.). Plant Sci., 167(1):27-34.
[26]Sharma, V.K., Hänsch, R., Mendel, R.R., Schulze, J., 2004. A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) using meristematic shoot segments excised from germinated mature embryos. Plant Cell Rep., 23(1-2):9-16.
[27]Sharma, V.K., Hänsch, R., Mendel, R.R., Schulze, J., 2005. Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L.). J. Exp. Bot., 56(417):1913-1922.
[28]Taniguchi, M., Enomoto, S., Komatsuda, T., Nakajima, K., Ohyama, K., 1991. Varietal differences in the ability of callus formation and plant regeneration from mature embryo in barley (Hordeum vulgare L.). Jpn. J. Breed, 41(4):571-579.
[29]Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., Brettell, R., 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J., 11(6):1369-1376.
[30]Wan, Y., Lemaux, P.G., 1994. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol., 104:37-48.
[31]Zapata, J.M., Sabater, B., Martin, M., 2004. Callus induction and in vitro regeneration from barley mature embryos. Biol. Plant., 48(3):473-476.
Open peer comments: Debate/Discuss/Question/Opinion
<1>