CLC number: Q814
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-04-28
Cited: 5
Clicked: 5928
Xing-hua Zhou, Feng-na Xi, Yi-ming Zhang, Xian-fu Lin. Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite[J]. Journal of Zhejiang University Science B, 2011, 12(6): 468-476.
@article{title="Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite",
author="Xing-hua Zhou, Feng-na Xi, Yi-ming Zhang, Xian-fu Lin",
journal="Journal of Zhejiang University Science B",
volume="12",
number="6",
pages="468-476",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000280"
}
%0 Journal Article
%T Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite
%A Xing-hua Zhou
%A Feng-na Xi
%A Yi-ming Zhang
%A Xian-fu Lin
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 6
%P 468-476
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000280
TY - JOUR
T1 - Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite
A1 - Xing-hua Zhou
A1 - Feng-na Xi
A1 - Yi-ming Zhang
A1 - Xian-fu Lin
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 6
SP - 468
EP - 476
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000280
Abstract: A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)n bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10−7 mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors.
[1]Ariga, K., Hill, J.P., Ji, Q.M., 2007. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys., 9(19):2319-2340.
[2]Cooper, T.M., Campbell, A.L., Crane, R.L., 1995. Formation of polypeptide-dye multilayers by electrostatic self-assembly technique. Langmuir, 11(7):2713-2718.
[3]Deng, L., Wang, Y.Z., Shang, L., Wen, D., Wang, F., Dong, S.J., 2008. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer. Biosens. Bioelectron., 24(4):951-957.
[4]Fendler, J.H., 1996. Self-assembled nanostructured materials. Chem. Mater., 8(8):1616-1624.
[5]Hammond, P.T., 2004. Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater., 16(15):1271-1293.
[6]Jiang, X.M., Chen, Z.C., Yang, S.M., Lin, H.F., Lin, X.F., 2004. Method of spectrophotometric microanalysis based on HRP/PET self-assembly film. Chin. Chem. Lett., 15(5):547-550.
[7]Kafi, A.K.M., Wu, G.S., Chen, A.C., 2008. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron., 24(4):566-571.
[8]Kim, J.P., Lee, B.Y., Hong, S., Sim, S.J., 2008. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem., 381(2):193-198.
[9]Li, J., Xiao, L.T., Liu, X.M., Zeng, G.M., Huang, G.H., Shen, G.L., Yu, R.Q., 2003. Amperometric biosensor with HRP immobilized on a sandwiched nano-Au/polymerized m-phenylenediamine film and ferrocene mediator. Anal. Bioanal. Chem., 376(6):902-907.
[10]Liu, G.D., Lin, Y.H., 2006. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem. Commun., 8(2):251-256.
[11]Liu, L.J., Zhang, F., Xi, F.N., Chen, Z.C., Lin, X.F., 2008. Uniform bionanomultilayer constructed with soluble multiwall carbon nanotubes and its application as biosensor. J. Electroanal. Chem., 623(2):135-141.
[12]Liu, Y., Lei, J.P., Ju, H.X., 2008. Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite. Talanta, 74(4):965-970.
[13]Ma, L.P., Yuan, R., Chai, Y.Q., Chen, S.H., Ling, S.J., 2009. Amperometric hydrogen peroxide biosensor based on covalently immobilizing thionine as a mediator. Bioprocess Biosyst. Eng., 32(4):537-544.
[14]Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P., Hirsch, A., 2002. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater., 1(3):190-194.
[15]Ou, C.F., Chen, S.H., Yuan, R., Chai, Y.Q., Zhong, X., 2008. Layer-by-layer self-assembled multilayer films of multi-walled carbon nanotubes and platinum-Prussian blue hybrid nanoparticles for the fabrication of amperometric immunosensor. J. Electroanal. Chem., 624(1-2):287-292.
[16]Ozoemena, K.I., Nyokong, T., 2006. Novel amperometric glucose biosensor based on an ether-linked cobalt(II) phthalocyanine–cobalt(II) tetraphenylporphyrin pentamer as a redox mediator. Electrochim. Acta, 51(24):5131-5136.
[17]Qiu, J.D., Deng, M.Q., Liang, R.P., Xiong, M., 2008. Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sens. Actuators B-Chem., 135(1):181-187.
[18]Ricci, F., Goncalves, C., Amine, A., Gorton, L., Palleschi, G., Moscone, D., 2003. Electroanalytical study of Prussian blue modified glassy carbon paste electrodes. Electroanalysis, 15(14):1204-1211.
[19]Sheng, Q., Zheng, J., 2009. Bienzyme system for the biocatalyzed deposition of polyaniline templated by multiwalled carbon nanotubes: a biosensor design. Biosens. Bioelectron., 24(6):1621-1628.
[20]Shi, Y.T., Yuan, R., Chai, Y.Q., Tang, M.Y., He, X.L., 2007. Amplification of antigen-antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles films on Titania nanoparticles/gold nanoparticles-coated Au electrode. J. Electroanal. Chem., 604(1):9-16.
[21]Sun, W., Li, X.Q., Wang, Y., Zhao, R.J., Jiao, K., 2009. Electrochemistry and electrocatalysis of hemoglobin on multiwalled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier. Electrochim. Acta, 54(17):4141-4148.
[22]Terry, L.A., White, S.F., Tigwell, L.J., 2005. The application of biosensors to fresh produce and the wider food industry. J. Agric. Food Chem., 53(5):1309-1316.
[23]Upadhyay, A.K., Ting, T.W., Chen, S.M., 2009. Amperometric biosensor for hydrogen peroxide based on coimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbon nanotubes. Talanta, 79(1):38-45.
[24]Xi, F.N., Liu, L.J., Chen, Z.C., Lin, X.F., 2009. One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition. Talanta, 78(3):1077-1082.
[25]Xu, F., Wang, L., Gao, M., Jin, L., Jin, J., 2002. Amperometric sensor for glucose and hypoxanthine based on a Pd-IrO2 modified electrode by a co-crosslinking bienzymic system. Talanta, 57(2):365-373.
[26]Xu, J.J., Zhou, D.M., Chen, H.Y., 1998. A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their cross-linking with glutaraldehyde on glassy carbon electrode. Electroanalysis, 10(10):713-716.
[27]Xu, J.Z., Zhu, J.J., Wu, Q., Hu, Z., Chen, H.Y., 2003. An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis, 15(3):219-224.
[28]Yang, X.S., Chen, X., Zhang, X., Yang, W.S., Evans, D.G., 2008. Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagentless hydrogen peroxide biosensor. Sens. Actuators B-Chem., 129(2):784-789.
[29]Yao, H.Q., Hu, N.F., 2010. pH-switchable bioelectrocatalysis of hydrogen peroxide on layer-by-layer films assembled by concanavalin A and horseradish peroxidase with electroactive mediator in solution. J. Phys. Chem. B, 114(9):3380-3386.
Open peer comments: Debate/Discuss/Question/Opinion
<1>