CLC number: X142
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-03-04
Cited: 12
Clicked: 35817
Shao-xian Wang, Xin-qiang Liang, Qi-xiang Luo, Fang Fan, Ying-xu Chen, Zu-zhang Li, Huo-xi Sun, Tian-fang Dai, Jun-nan Wan, Xiao-jun Li. Fertilization increases paddy soil organic carbon density[J]. Journal of Zhejiang University Science B, 2012, 13(4): 274-282.
@article{title="Fertilization increases paddy soil organic carbon density",
author="Shao-xian Wang, Xin-qiang Liang, Qi-xiang Luo, Fang Fan, Ying-xu Chen, Zu-zhang Li, Huo-xi Sun, Tian-fang Dai, Jun-nan Wan, Xiao-jun Li",
journal="Journal of Zhejiang University Science B",
volume="13",
number="4",
pages="274-282",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100145"
}
%0 Journal Article
%T Fertilization increases paddy soil organic carbon density
%A Shao-xian Wang
%A Xin-qiang Liang
%A Qi-xiang Luo
%A Fang Fan
%A Ying-xu Chen
%A Zu-zhang Li
%A Huo-xi Sun
%A Tian-fang Dai
%A Jun-nan Wan
%A Xiao-jun Li
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 4
%P 274-282
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100145
TY - JOUR
T1 - Fertilization increases paddy soil organic carbon density
A1 - Shao-xian Wang
A1 - Xin-qiang Liang
A1 - Qi-xiang Luo
A1 - Fang Fan
A1 - Ying-xu Chen
A1 - Zu-zhang Li
A1 - Huo-xi Sun
A1 - Tian-fang Dai
A1 - Jun-nan Wan
A1 - Xiao-jun Li
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 4
SP - 274
EP - 282
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100145
Abstract: Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.
[1]Batlle-Bayer, L., Batjes, N.H., Bindraban, P.S., 2010. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric. Ecosyst. Environ., 137(1-2):47-58.
[2]Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A.K., Gupta, H.S., Mitra, S., 2010. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutr. Cycl. Agroecosys., 86(1):1-16.
[3]Bi, L.D., Zhang, B., Liu, G.R., Li, Z.Z., Liu, Y.R., Ye, C., Yu, X.C., Lai, T., Zhang, J.G., Yin, J.M., Liang, Y., 2009. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ., 129(4):534-541.
[4]Bolinder, M.A., Kätterer, T., Andrén, O., Ericson, L., Parent, L.E., Kirchmann, H., 2010. Long-term soil organic carbon and nitrogen dynamics in forage-based crop rotations in Northern Sweden (63‒64° N). Agric. Ecosyst. Environ., 138(3-4):335-342.
[5]Cai, Z.C., Qin, S.W., 2006. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma, 136(3-4):708-715.
[6]Feng, H.L., Kurkalova, L.A., Kling, C.L., Gassman, P.W., 2007. Transfers and environmental co-benefits of carbon sequestration in agricultural soils: retiring agricultural land in the Upper Mississippi River Basin. Climatic Change, 80(1-2):91-107.
[7]Franzluebbers, A.J., 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil Till. Res., 66(2):95-106.
[8]Franzluebbers, A.J., 2005. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Till. Res., 83(1):120-147.
[9]Hao, X.H., Liu, S.L., Wu, J.S., Hu, R.G., Tong, C.L., Su, Y.Y., 2008. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosys., 81(1):17-24.
[10]Hao, X.Y., Chang, C., Travis, G.R., Zhang, F.R., 2003. Soil carbon and nitrogen response to 25 annual cattle manure applications. J. Plant Nutr. Soil Sci., 166(2):239-245.
[11]He, N.Z., Ni, W.Z., 1996. Fluctuation and balance of organic carbon in high-yielding paddy soil with wheat-rice cropping system as an affected by different fertilizer management. Plant Nutr. Fertil. Sci., 2(4):315-321 (in Chinese).
[12]IUSS Working Group WRB, 2006. World Reference Base for Soil Resources 2006, 2nd Ed. World Soil Resources Reports No. 103. FAO, Rome, Italy.
[13]Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10(2):423-436.
[14]Khan, S.A., Mulvaney, R.L., Ellsworth, T.R., Boast, C.W., 2007. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual., 36(6):1821-1832.
[15]Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677):1623-1627.
[16]Li, J.T., Zhang, B., 2007. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical China. Pedosphere, 17(5):568-579.
[17]Li, S., Li, H., Liang, X.Q., Chen, Y.X., Wang, S.X., Wang, F.E., 2009. Phosphorus removal of rural wastewater by the paddy-rice-wetland system in Tai Lake Basin. J. Hazard. Mater., 171(1-3):301-308.
[18]Li, Z.P., Liu, M., Wu, X.C., Han, F.X., Zhang, T.L., 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil Till. Res., 106(2):268-274.
[19]Li, Z.Z., Liu, G.R., Liu, Y.R., Zhou, R.J., 2006. The Effects of Long-term Fertilization on Soil Fertility of a Paddy Field in Low Hilly Area. In: Xu, M.G., Liang, G.Q., Zhang, F.D. (Eds.), Soil Fertility Change in China. China Agri. Sci. Tech. Press, Peking, p.67-84 (in Chinese).
[20]López-Bellido, R.J., Fontán, J.M., López-Bellido, F.J., López-Bellido, L., 2010. Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean Vertisol. Agron. J., 102(1):310-318.
[21]Luo, Z.K., Wang, E., Sun, O.J., 2010. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma, 155(3-4):211-223.
[22]Majumder, B., Mandal, B., Bandyopadhyay, P.K., Chaudhury, J., 2007. Soil organic carbon pools and productivity relationships for a 34-year old rice-wheat-jute agroecosystem under different fertilizer treatments. Plant Soil, 297(1-2):53-67.
[23]Manna, M.C., Swarup, A., Wanjari, R.H., Singh, Y.V., Ghosh, P.K., Singh, K.N., Tripathi, A.K., Saha, M.N., 2006. Soil organic matter in a West Bengal Inceptisol after 30 years of multiple cropping and fertilization. Soil Sci. Soc. Am. J., 70(1):121-129.
[24]Nayak, P., Patel, D., Ramakrishnan, B., Mishra, A.K., Samantaray, R.N., 2009. Long-term application effects of chemical fertilizer and compost on soil carbon under intensive rice-rice cultivation. Nutr. Cycl. Agroecosys., 83(3):259-269.
[25]Pan, G.X., Li, L.Q., Wu, L.S., Zhang, X.H., 2004. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Change Biol., 10(1):79-92.
[26]Pan, G.X., Zhou, P., Zhang, X.H., Li, L.Q., Zheng, J.F., Qiu, D.S., Chu, Q.H., 2006. Effect of different fertilization practices on crop carbon assimilation and soil carbon sequestration: a case of a paddy under a long-term fertilization trial from the Tai Lake region, China. Acta Ecol. Sin., 26(11):3704-3710 (in Chinese).
[27]Pan, G.X., Zhou, P., Li, Z.P., Smith, P., Li, L.Q., Qiu, D.S., Zhang, X.H., Xu, X.B., Shen, S.Y., Chen, X.M., 2009. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric. Ecosyst. Environ., 131(3-4):274-280.
[28]Pan, G.X., Xu, X.W., Smith, P., Pan, W., Lal, R., 2010. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ., 136(1-2):133-138.
[29]Rasool, R., Kukal, S.S., Hira, G.S., 2007. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system. Soil Till. Res., 96(1-2):64-72.
[30]Reid, D.K., 2008. Comment on “The myth of nitrogen fertilization for soil carbon sequestration”, by S.A. Khan et al. in the Journal of Environmental Quality 36:1821-1832. J. Environ. Qual., 37(3):739.
[31]Sainju, U.M., Senwo, Z.N., Nyakatawa, E.Z., Tazisong, I.A., Reddy, K.C., 2008. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agric. Ecosyst. Environ., 127(3-4):234-240.
[32]Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., 1996. Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Ser. 5, SSSA, Madison, WI.
[33]Tong, C.L., Xiao, H.A., Tang, G.Y., Wang, H.Q., Huang, T.Q., Xia, H.A., Keith, S.J., Li, Y., Liu, S.L., Wu, J.S., 2009. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Till. Res., 106(1):8-14.
[34]Tsuji, H., Yamamoto, H., Matsuo, K., Usuki, K., 2006. The effects of long-term conservation tillage, crop residues and P fertilizer on soil conditions and responses of summer and winter crops on an Andosol in Japan. Soil Till. Res., 89(2):167-176.
[35]West, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. Environ., 91(1-3):217-232.
[36]West, T., Six, J., 2007. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 80(1-2):25-41.
[37]Zhang, S.L., Yang, X.Y., Wiss, M., Grip, H., Lövdahl, L., 2006. Changes in physical properties of a loess soil in China following two long-term fertilization regimes. Geoderma, 136(3-4):579-587.
[38]Zhang, W.J., Xu, M.G., Wang, B.R., Wang, X.J., 2009. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Nutr. Cycl. Agroecosys., 84(1):59-69.
Open peer comments: Debate/Discuss/Question/Opinion
<1>