Full Text:   <3178>

CLC number: Q945

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2011-04-07

Cited: 11

Clicked: 6199

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2011 Vol.12 No.5 P.408-418

http://doi.org/10.1631/jzus.B1000291


Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype


Author(s):  Chun-yong Wu, Ying Feng, Md. Jahidul Islam Shohag, Ling-li Lu, Yan-yan Wei, Chong Gao, Xiao-e Yang

Affiliation(s):  MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   xyang571@yahoo.com

Key Words:  Zinc, Stable isotope, High Zn-density rice genotype, Translocation, Remobilization


Share this article to: More <<< Previous Article|

Chun-yong Wu, Ying Feng, Md. Jahidul Islam Shohag, Ling-li Lu, Yan-yan Wei, Chong Gao, Xiao-e Yang. Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype[J]. Journal of Zhejiang University Science B, 2011, 12(5): 408-418.

@article{title="Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype",
author="Chun-yong Wu, Ying Feng, Md. Jahidul Islam Shohag, Ling-li Lu, Yan-yan Wei, Chong Gao, Xiao-e Yang",
journal="Journal of Zhejiang University Science B",
volume="12",
number="5",
pages="408-418",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000291"
}

%0 Journal Article
%T Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype
%A Chun-yong Wu
%A Ying Feng
%A Md. Jahidul Islam Shohag
%A Ling-li Lu
%A Yan-yan Wei
%A Chong Gao
%A Xiao-e Yang
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 5
%P 408-418
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000291

TY - JOUR
T1 - Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype
A1 - Chun-yong Wu
A1 - Ying Feng
A1 - Md. Jahidul Islam Shohag
A1 - Ling-li Lu
A1 - Yan-yan Wei
A1 - Chong Gao
A1 - Xiao-e Yang
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 5
SP - 408
EP - 418
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000291


Abstract: 
zinc (Zn) is an essential micronutrient for humans, but Zn deficiency has become serious as equally as iron (Fe) and vitamin A deficiencies nowadays. Selection and breeding of high Zn-density crops is a suitable, cost-effective, and sustainable way to improve human health. However, the mechanism of high Zn density in rice grain is not fully understood, especially how Zn transports from soil to grains. Hydroponics experiments were carried out to compare Zn uptake and distribution in two different Zn-density rice genotypes using stable isotope technique. At seedling stage, IR68144 showed higher 68Zn uptake and transport rate to the shoot for the short-term, but no significant difference was observed in both genotypes for the long-term. Zn in xylem sap of IR68144 was consistently higher, and IR68144 exhibited higher Zn absorption ratio than IR64 at sufficient (2.0 µmol/L) or surplus (8.0 µmol/L) Zn supply level. IR64 and IR68144 showed similar patterns of 68Zn accumulation in new leaves at seedling stage and in developing grains at ripening stage, whereas 68Zn in new leaves and grains of IR68144 was consistently higher. These results suggested that a rapid root-to-shoot translocation and enhanced xylem loading capacity may be the crucial processes for high Zn density in rice grains.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bohn, L., Meyer, A.S., Rasmussen, S.K., 2008. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ.-Sci. B, 9(3):165-191.

[2]Bouis, H.E., 2000. Special issue on improving human nutrition through agriculture. Food Nutr. Bull., 21(4):351-576.

[3]Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., Lux, A., 2007. Zinc in plants. New Phytol., 173(4):677-702.

[4]Cakmak, I., 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 302(1-2):1-17.

[5]Chen, W.R., He, Z.L., Yang, X.E., Feng, Y., 2009. Zinc efficiency is correlated with root morphology, ultrastructure, and antioxidative enzymes in rice. J. Plant Nutr., 32(2):287-305.

[6]Constable, G.A., Rochester, I.J., Cook, J.B., 1988. Zinc, copper, iron, manganese and boron uptake by cotton on cracking clay soils of high pH. Aust. J. Exp. Agric., 28(3):351-356.

[7]Gao, X.P., Thomas, W., Kuyper, E., Zou, C.Q., Zhang, F.S., Hoffland, E., 2007. Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil, 290(1-2):283-291.

[8]Genc, Y., Huang, C.Y., Langridge, P., 2007. A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J. Exp. Bot., 58(11):2775-2784.

[9]Graham, R.D., Welch, R.M., Bouis, H.E., 2001. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv. Agron., 70:77-142.

[10]Grusak, M.A., Pearson, J.N., Marentes, E., 1999. The physiology of micronutrient homeostasis in field crops. Field Crops Res., 60(1-2):41-56.

[11]Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., Kramer, U., 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and copy number expansion of HMA4. Nature, 453(7193):391-395.

[12]Hao, H.L., Feng, Y., Huang, Y.Y., Tian, S.K., Lu, L.L., Yang, X.E., Wei, Y.Z., 2005. Situ analysis of cellular distribution of iron and zinc in rice grains using SRXRF method. High Energy Phys. Nucl., 29:56-60 (in Chinese).

[13]Hart, J.J., Welch, R.M., Norvell, W.A., Sullivan, L.A., Kochian, L.V., 1998. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol., 116(4):1413-1420.

[14]Hocking, P.J., 1980. The composition of phloem exudate and xylem sap from tree tobacco (Nicotiana glauca Grah.). Ann. Bot., 45(6):633-643.

[15]Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F., Cobbett, C.S., 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16(5):1327-1339.

[16]Jiang, W., Struik, P.C., Lingna, J., van Keulen, H., Zhao, M., Stomph, T.J., 2007. Uptake and distribution of root-applied or foliar applied 65Zn after flowering in aerobic rice. Ann. Appl. Biol., 150(3):383-391.

[17]Khan, A., Weaver, C.M., 1989. Pattern of zinc-65 incorporation into soybean seeds by root absorption, stem injection, and foliar application. J. Agric. Food Chem., 37(4):855-860.

[18]Koike, S., Inoue, H., Mizuno, D., Takahashi, M., Nakanishi, H., Mori, S., Nishizawa, N.K., 2004. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J., 39(3):415-424.

[19]Lasat, M.M., Baker, A.J.M., Kochian, L.V., 1996. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol., 112(4):1715-1722.

[20]Liu, A., Hamel, C., Hamilton, R.I., Ma, B.L., 2000. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9(6):331-336.

[21]Liu, J.C., Ockenden, I., Truax, M., Lott, J.N.A., 2004. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1–1) rice. Seed Sci. Res., 14(2):109-116.

[22]Lott, J.N.A., 1984. Accumulation of Seed Reserves of Phosphorus and Other Minerals. In: Murray, D.R. (Ed.), Seed Physiology, Vol. I. Academic Press, New York, p.139-166.

[23]Lu, L.L., Tian, S.K., Yang, X.E., Li, T.Q., He, Z.L., 2009. Cadmium uptake and xylem loading are active processes in the hyper-accumulator Sedum alfredii. J. Plant Physiol., 166(6):579-587.

[24]Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, San Diego, California, USA, p.325-329.

[25]Miller, R.O., Jacobsen, J.S., Skogley, E.O., 1994. Aerial accumulation and partitioning of nutrients by hard red spring wheat. Commun. Soil Sci. Plant Anal., 25(11):1891-1911.

[26]Page, V., Feller, U., 2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann. Bot., 96(3):425-434.

[27]Palmgren, M.G., Clemens, S., Williams, L.E., Kraemer, U., Borg, S., Schjorring, J.K., Sanders, D., 2008. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci., 13(9):464-473.

[28]Pearson, J.N., Rengel, Z., 1995. Uptake and distribution of 65Zn and 54Mn in wheat grown at sufficient and deficient levels of Zn and Mn II. During grains development. J. Exp. Bot., 46(7):841-845.

[29]Pearson, J.N., Rengel, Z., Jenner, C.F., Graham, R.D., 1995. Transport of zinc and manganese to developing wheat grains. Physiol. Plant., 95(3):449-455.

[30]Pearson, J.N., Rengel, Z., Jenner, C.F., Graham, R.D., 1996. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiol. Plant., 98(2):229-234.

[31]Rengel, Z., 1999. Physiological responses of wheat genotypes grown in chelator-buffered nutrient solutions with increasing concentrations of excess HEDTA. Plant Soil, 215(2):193-202.

[32]Riceman, D.S., Jones, G.B., 1958. Distribution of zinc in subterranean clover (Trifolium subterraneum L.) grown to maturity in a culture solution containing zinc labeled with the radioactive isotope 65Zn. Aust. J. Agric. Res., 9(6):730-744.

[33]Ryan, M.H., Angus, J.F., 2003. Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil, 250(2):225-239.

[34]Schaaf, G., Schikora, A., Haberle, J., Vert, G., Ludewig, U., Briat, J.F., Curie, C., von Wiren, N., 2005. A putative function for the Arabidopsis Fe phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol., 46(5):762-774.

[35]Sellappan, K., Datta, K., Parkhi, V., Datta, S.K., 2009. Rice caryopsis structure in relation to distribution of micronutrients (iron, zinc, β-carotene) of rice cultivars including transgenic indica rice. Plant Sci., 177(6):557-562.

[36]Stomph, T.J., Jiang, W., Struik, P.C., 2009. Zinc biofortification of cereals: rice differs from wheat and barley. Trends Plant Sci., 14(3):123-124.

[37]Todd, A.S., Brinkman, S., Wolf, R.E., Lamothe, P.J., Smith, K.S., Ranville, J.F., 2009. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (oncorhynchus mykiss) during acute zinc exposures in hard and soft waters. Environ. Toxicol. Chem., 28(6):1233-1243.

[38]Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J., 2006. A NAC gene regulating senescence improves grains protein, zinc and iron content in wheat. Science, 314(5803):1298-1301.

[39]Volschenk, C.G., Hunter, J.J., le Roux, D.J., Watts, J.E., 1999. Effect of graft combination and position of application on assimilation and translocation of zinc in grapevines. J. Plant Nutr., 22(1):115-119.

[40]Waters, B.M., Grusak, M.A., 2008. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol., 177(2):389-405.

[41]Welch, R.M., 1995. Micronutrient nutrition of plants. Crit. Rev. Plant Sci., 14(1):49-82.

[42]Welch, R.M., Graham, R.D., 1999. A new paradigm for world agriculture: meeting human needs—productive, sustainable, nutritious. Field Crops Res., 60(1-2):1-10.

[43]Welch, R.M., Graham, R.D., 2002. Breeding crops for enhanced micronutrient content. Plant Soil, 245(1):205-214.

[44]Welch, R.M., Graham, R.D., 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot., 55(396):353-364.

[45]Wissuwa, M., Ismail, A.M., Graham, R.D., 2008. Rice grains zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil, 306(1-2):37-48.

[46]Wolf, R.E., Todd, A.S., Brinkman, S., Lamothe, P.J., Smith, K.S., Ranville, J.F., 2009. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Talanta, 80(2):676-684.

[47]Yang, X.E., Römheld, V., Marschner, H., Chaney, R.L., 1994. Application of chelator-buffered nutrient solution technique on zinc nutrition study in rice. Plant Soil, 163(1):85-94.

[48]Yang, X.E., Li, T.Q., Yang, J.C., He, Z.L., Lu, L.L., Meng, F.H., 2006. Zinc compartmentation in root, transport into xylem, and adsorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1):185-195.

[49]Zhao, F.J., Hamon, R.E., Lombi, E., McLaughlin, M.J., McGrath, S.P., 2002. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 53(368):535-543.

[50]Zimmermann, M.B., Hurrell, R.F., 2002. Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr. Opin. Biotech., 13(2):142-145.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE