CLC number: R187+.2; X592
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-03-13
Cited: 9
Clicked: 6111
Yan-ju Li, Neng Zhu, Hai-quan Jia, Jin-hui Wu, Ying Yi, Jian-cheng Qi. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas[J]. Journal of Zhejiang University Science B, 2012, 13(4): 254-260.
@article{title="Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas",
author="Yan-ju Li, Neng Zhu, Hai-quan Jia, Jin-hui Wu, Ying Yi, Jian-cheng Qi",
journal="Journal of Zhejiang University Science B",
volume="13",
number="4",
pages="254-260",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100289"
}
%0 Journal Article
%T Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas
%A Yan-ju Li
%A Neng Zhu
%A Hai-quan Jia
%A Jin-hui Wu
%A Ying Yi
%A Jian-cheng Qi
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 4
%P 254-260
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100289
TY - JOUR
T1 - Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas
A1 - Yan-ju Li
A1 - Neng Zhu
A1 - Hai-quan Jia
A1 - Jin-hui Wu
A1 - Ying Yi
A1 - Jian-cheng Qi
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 4
SP - 254
EP - 260
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100289
Abstract: Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cm×1.0 cm for PVC, GS, and CC) were contaminated with 10 μl of Bacillus subtilis var. niger (ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.
[1]Bergmann, H., Koparal, S., 2005. The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection. Electrochim. Acta, 50(25-26):5218-5228.
[2]Chatuev, B.M., Peterson, J.W., 2010. Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain). J. Hosp. Infect., 74(2):178-183.
[3]Chauret, C.P., Radziminski, C.Z., Lepuil, M., Creason, R., Andrews, R.C., 2001. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators. Appl. Environ. Microbiol., 67(7):2993-3001.
[4]Czarneski, M.A., Lorcheim, P., 2005. Isolator decontamination using chlorine dioxide gas. Pharm. Technol., 29(4):124-133.
[5]Han, Y., Sherman, D.M., Linton, R.H., Nielsen, S.S., Nelson, P.E., 2000. The effects of washing and chlorine dioxide gas on survival and attachment of Escherichia coli O157: H7 to green pepper surfaces. Food Microbiol., 17(5):521-533.
[6]Huang, J., Wang, L., Ren, N., Ma, F., Ju, L., 1997. Disinfection effect of chlorine dioxide on bacteria in water. Water Res., 31(3):607-613.
[7]Jeng, D.K., Woodworth, A.G., 1990. Chlorine dioxide gas sterilization under square-wave conditions. Appl. Environ. Microbiol., 56(2):514-519.
[8]Karabulut, O.A., Ilhan, K., Arslan, U., Vardar, C., 2009. Evaluation of the use of chlorine dioxide by fogging for decreasing postharvest decay of fig. Postharvest Biol. Technol., 52(2):313-315.
[9]Luftman, H.S., Regits, M.A., Lorcheim, P., Czarneski, M.A., Boyle, T., Aceto, H., Dallap, B., Munro, D., Faylor, K., 2006. Chlorine dioxide gas decontamination of large animal hospital intensive and neonatal care units. Appl. Biosaf., 11(3):144-154.
[10]Mahmoud, B.S.M., Bhagat, A.R., Linton, R.H., 2007. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. Food Microbiol., 24(7-8):736-744.
[11]Munro, K., Lanser, J., Flower, R., 1999. A comparative study of methods to validate formaldehyde decontamination of biological safety cabinets. Appl. Environ. Microbiol., 165(2):873-876.
[12]Radziminski, C., Ballantyne, L., Hodson, J., Creason, R., Andrews, R.C., Chauret, C., 2002. Disinfection of Bacillus subtilis spores with chlorine dioxide: a bench-scale and pilot-scale study. Water Res., 36(6):1629-1639.
[13]Rastogi, V.K., Wallace, L., Smith, L.S., Ryan, S.P., Martin, G.B., 2009. Quantitative method to determine sporicidal decontamination of building surfaces by gaseous fumigants, and issues related to laboratory-scale studies. Appl. Environ. Microbiol., 75(11):3688-3694.
[14]Rastogi, V.K., Ryan, S.P., Wallace, L., Smith, L.S., Shah, S.S., Martin, G.B., 2010. Systematic evaluation of the efficacy of chlorine dioxide in decontamination of building interior surfaces contaminated with anthrax spores. Appl. Environ. Microbiol., 76(10):3343-3351.
[15]Rogers, J.V., Sabourin, C.L., Taylor, M.L., Riggs, K., Choi, Y.W., Richter, W.R., Rudnicki, D.C., Stone, H.J., 2004. CDG Research Corporation Bench-Scale Chlorine Dioxide Gas: Solid Generator. Environmental Technology Verification Report. ETV Building Decontamination Technology Center, Columbus, Ohio, p.16, 30.
[16]Rogers, J.V., Choi, Y.W., Richter, W.R., Rudnicki, D.C., Joseph, D.W., Sabourin, C.L.K., Taylor, M.L., Chang, J.C.S., 2007. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials. J. Appl. Microbiol., 103(4):1104-1112.
[17]Sagripanti, J.L., Carrera, M., Insalaco, J., Ziemski, M., Rogers, J., Zandomeni, R., 2007. Virulent spores of Bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants. J. Appl. Microbiol., 102(1):11-21.
[18]US Environmental Protection Agency (US EPA), 2008. Effects of Vapor-Based Decontamination Systems on Selected Building Interior Materials: Chlorine Dioxide (EPA/600/R-08/054). Available from http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1000P0S.txt
[19]Wood, J.P., Martin, G.B., 2009. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis. J. Hazard. Mater., 164(2-3):1460-1467.
[20]Zuo, J.L., Cui, F.Y., Lin, T., 2006. Study of removal effect on Mesocyclops leukarti with oxidants. J. Zhejiang Univ.-Sci. B, 7(3):171-179.
Open peer comments: Debate/Discuss/Question/Opinion
<1>