Full Text:   <3550>

Summary:  <2158>

CLC number: R782.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-04-16

Cited: 2

Clicked: 6909

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.5 P.482-490

http://doi.org/10.1631/jzus.B1300203


Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis*


Author(s):  Qing-guo Lai1,2, Shao-long Sun3,4, Xiao-hong Zhou5, Chen-ping Zhang2, Kui-feng Yuan1, Zhong-jun Yang1, Sheng-lei Luo1, Xiao-peng Tang1, Jiang-bo Ci1

Affiliation(s):  1. Department of Oral and Maxillofacial Surgery, the Second Hospital of Shandong University, Jinan 250033, China; more

Corresponding email(s):   zhangchenping9yuan@126.com

Key Words:  Adipose-derived stem cell (ADSC), Distraction osteogenesis, Transcription factor, Gene transfection


Qing-guo Lai, Shao-long Sun, Xiao-hong Zhou, Chen-ping Zhang, Kui-feng Yuan, Zhong-jun Yang, Sheng-lei Luo, Xiao-peng Tang, Jiang-bo Ci. Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis[J]. Journal of Zhejiang University Science B, 2014, 15(5): 482-490.

@article{title="Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis",
author="Qing-guo Lai, Shao-long Sun, Xiao-hong Zhou, Chen-ping Zhang, Kui-feng Yuan, Zhong-jun Yang, Sheng-lei Luo, Xiao-peng Tang, Jiang-bo Ci",
journal="Journal of Zhejiang University Science B",
volume="15",
number="5",
pages="482-490",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300203"
}

%0 Journal Article
%T Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis
%A Qing-guo Lai
%A Shao-long Sun
%A Xiao-hong Zhou
%A Chen-ping Zhang
%A Kui-feng Yuan
%A Zhong-jun Yang
%A Sheng-lei Luo
%A Xiao-peng Tang
%A Jiang-bo Ci
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 5
%P 482-490
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300203

TY - JOUR
T1 - Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis
A1 - Qing-guo Lai
A1 - Shao-long Sun
A1 - Xiao-hong Zhou
A1 - Chen-ping Zhang
A1 - Kui-feng Yuan
A1 - Zhong-jun Yang
A1 - Sheng-lei Luo
A1 - Xiao-peng Tang
A1 - Jiang-bo Ci
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 5
SP - 482
EP - 490
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300203


Abstract: 
This study was designed to investigate the effects of local delivery of adipose-derived stem cells (ADSCs) transfected with transcription factor osterix (OSX) on bone formation during distraction osteogenesis. New Zealand white rabbits (n=54) were randomly divided into three groups (18 rabbits per group). A directed cloning technique was used for the construction of recombinant plasmid pEGFP-OSX, where EGFP is the enhanced green fluorescence protein. After osteodistraction of the right mandible of all experimental rabbits, rabbits in group A were treated with ADSCs transfected with pEGFP-OSX, group B with ADSCs transfected with pEGFP-N1, and group C with physiological saline. Radiographic and histological examinations were processed after half of the animals within each group were humanely killed by injection of sodium pentothal at Week 2 or 6 after surgery. The distraction bone density was measured as its projectional bone mineral density (BMD). Three parameters were measured, namely, the thickness of new trabeculae (TNT), and the volumes of the newly generated cortical bone (NBV1) and the cancellous bone (NBV2) of the distracted regions. Good bone generation in the distraction areas was found in group A, which had the highest BMD, TNT, and NBV in the distraction zones among the groups. There was no significant difference in bone generation in the distraction areas between groups B and C. The results indicate that the transplantation of ADSCs transfected with pEGFP-OSX can effectively promote bone generation during distraction in vivo.

pEGFP-OSX修饰的脂肪干细胞促进牵张成骨中新骨形成

研究目的:观察牵张间隙植入pEGFP-OSX修饰的脂肪干细胞对牵张成骨中新骨形成的作用。
创新要点:提出来源广泛容易获取的脂肪干细胞作为种子细胞,被基因OSX修饰后,在体内环境下可能促进成骨。
研究方法:通过X射线检查、组织学检查等手段观察成骨效果,进行统计学分析。
重要结论:通过短期的动物试验发现,pEGFP-OSX修饰的脂肪干细胞在体内环境下促进牵张成骨中新骨形成(见表1和图3-5)。

关键词:脂肪干细胞;牵张成骨;转录因子;基因转染

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Asahara, T., Kalka, C., Isner, J.M., 2000. Stem cell therapy and gene transfer for regeneration. Gene Ther, 7(6):451-457. 


[2] Ashinoff, R.L., Cetrulo, C.L., Galiano, R.D., 2004. Bone morphogenic protein-2 gene therapy for mandibular distraction osteogenesis. Ann Plast Surg, 52(6):585-590. 


[3] Banfi, A., Bianchi, G., Galotto, M., 2001. Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment. Leuk Lymphoma, 42(5):863-870. 


[4] Banfi, A., Podest, M., Fazzuoli, L., 2001. High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer, 92(9):2419-2428. 


[5] Breitbart, A.S., Grande, D.A., Mason, J.M., 1999. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg, 42(5):488-495. 


[6] Dazzi, F., van Laar, J.M., Cope, A., 2007. Cell therapy for autoimmune diseases. Arthritis Res Ther, 9(2):206


[7] Derubeis, A.R., Cancedda, R., 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng, 32(1):160-165. 


[8] Edwards, P.C., Mason, J.M., 2006. Gene-enhanced tissue engineering for dental hard tissue regeneration: (1) overview and practical considerations. Head Face Med, 2(1):12


[9] Edwards, P.C., Mason, J.M., 2006. Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration. Head Face Med, 2(1):16


[10] Fraser, J.K., Wulur, I., Alfonso, Z., 2006. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol, 24(4):150-154. 


[11] Gao, Y., Jheon, A., Nourkeyhani, H., 2004. Molecular cloning, structure, expression, and chromosomal localization of the human osterix (SP7) gene. Gene, 341:101-110. 


[12] Halvorsen, Y.D., Franklin, D., Bond, A.L., 2001. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 7(6):729-741. 


[13] Hu, J., Qi, M.C., Zou, S.J., 2007. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res, 25(2):241-251. 


[14] Jaiswal, N., Haynesworth, S.E., Caplan, A.I., 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitroJ Cell Biochem, 64(2):295-312. 


[15] Kim, Y.J., Kim, H.N., Park, E.K., 2006. The bone-related Zn finger transcription factor osterix promotes proliferation of mesenchymal cells. Gene, 366(1):145-151. 


[16] Lai, Q.G., Yuan, K.F., Xu, X., 2011. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 111(4):412-419. 


[17] Lange, C., Schroeder, J., Lioznov, M.V., 2005. High-potential human mesenchymal stem cells. Stem Cells Dev, 14(1):70-80. 


[18] Lee, J.Y., Lee, Y.M., Kim, M.J., 2006. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol Cells, 22(2):182-188. 


[19] Liu, H.Y., Chiou, J.F., Wu, A.T., 2012. The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials, 33(26):6105-6112. 


[20] Liu, W., Cui, L., Cao, Y., 2006. Bone reconstruction with bone marrow stromal cells. Methods Enzymol, 420:362-380. 


[21] Mason, J.M., Breitbart, A.S., Barcia, M., 2000. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res, 379:S171-S178. 


[22] Muschler, G.F., Nitto, H., Boehm, C.A., 2001. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res, 19(1):117-125. 


[23] Nakashima, K., Zhou, X., Kunkel, G., 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108(1):17-29. 


[24] Nathan, S., De, S.D., Thambyah, A., 2003. Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng, 9(4):733-744. 


[25] Nishio, Y., Dong, Y., Paris, M., 2006.  Runx2-mediated regulation of the zinc finger osterix/Sp7 gene. Gene, 372(10):62-70. 


[26] Oreffo, R.O.C., Bord, S., Triffitt, J.T., 1998. Skeletal progenitor cells and ageing human populations. Clin Sci, 94(5):549-555. 


[27] Pittenger, M.F., Mackay, A.M., Beck, S.C., 1999. Multilineage potential of adult human mesechymal stem cells. Science, 284(5411):143-147. 


[28] Qi, M., Hu, J., Zou, S., 2006. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg, 34(5):283-289. 


[29] Schaffler, A., Buchler, C., 2007. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells, 25(4):818-827. 


[30] Tai, G., Polak, J.M., Bishop, A.E., 2004. Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcription factor osterix. Tissue Eng, 10(9-10):1456-1466. 


[31] Uccelli, A., Pistoia, V., Moretta, L., 2007. Mesenchymal stem cells: a new strategy for immunosuppression?. Trends Immunol, 28(5):219-226. 


[32] Wu, L., Wu, Y., Lin, Y., 2007. Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol Cell Biochem, 301(1-2):83-92. 


[33] Zuk, P.A., Zhu, M., Mizuno, H., 2001. Multilineage cell from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7(2):211-228. 


[34] Zuk, P.A., Zhu, M., Ashjian, P., 2002. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 13(12):4279-4295. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE