References
[1] Armitage, P.A., Schwindack, C., Bastin, M.E., 2007. Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging.
Magn Reson Imaging, 25(3):303-310.


[2] Bruix, J., Sherman, M., 2005. Management of hepatocellular carcinoma.
Hepatology, 42(5):1208-1236.


[3] Chinnaiyan, A.M., Prasad, U., Shankar, S., 2000. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy.
PNAS, 97(4):1754-1759.


[4] Dzik-Jurasz, A., Domenig, C., George, M., 2002. Diffusion MRI for prediction of response of rectal cancer to chemoradiation.
Lancet, 360(9329):307-308.


[5] Galons, J.P., Altbach, M.I., Paine-Murrieta, G.D., 1999. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging.
Neoplasia, 1(2):113-117.


[6] Hall, D.E., Moffat, B.A., Stojanovska, J., 2004. Therapeutic efficacy of DTI-015 using diffusion magnetic resonance imaging as an early surrogate marker.
Clin Cancer Res, 10(23):7852-7859.


[7] Heijmen, L., Verstappen, M.C., ter Voert, E.E., 2012. Tumour response prediction by diffusion-weighted MR imaging: ready for clinical use?.
Crit Rev Oncol Hematol, 83(2):194-207.

[8] Jain, R.K., 2005. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.
Science, 307(5706):58-62.


[9] Kudo, M., 2008. Hepatocellular carcinoma 2009 and beyond: from the surveillance to molecular targeted therapy.
Oncology, 75(Suppl. 1):1-12.


[10] Llovet, J.M., Burroughs, A., Bruix, J., 2003. Hepatocellular carcinoma.
Lancet, 362(9399):1907-1917.


[11] Llovet, J.M., Ricci, S., Mazzaferro, V., 2008. Sorafenib in advanced hepatocellular carcinoma.
N Engl J Med, 359(4):378-390.


[12] Low, R.N., Gurney, J., 2007. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI.
J Magn Reson Imaging, 25(4):848-858.


[13] Lyng, H., Haraldseth, O., Rofstad, E.K., 2000. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.
Magn Reson Med, 43(6):828-836.


[14] Moffat, B.A., Hall, D.E., Stojanovska, J., 2004. Diffusion imaging for evaluation of tumor therapies in preclinical animal models.
MAGMA, 17(3-6):249-259.


[15] Moffat, B.A., Chenevert, T.L., Lawrence, T.S., 2005. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response.
PNAS, 102(15):5524-5529.


[16] Provenzale, J.M., Mukundan, S., Barboriak, D.P., 2006. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response.
Radiology, 239(3):632-649.


[17] Ross, B.D., Moffat, B.A., Lawrence, T.S., 2003. Evaluation of cancer therapy using diffusion magnetic resonance imaging.
Mol Cancer Ther, 2(6):581-587.

[18] Seierstad, T., Folkvord, S., Roe, K., 2007. Early changes in apparent diffusion coefficient predict the quantitative antitumoral activity of capecitabine, oxaliplatin, and irradiation in HT29 xenografts in athymic nude mice.
Neoplasia, 9(5):392-400.


[19] Thoeny, H.C., de Keyzer, F., Chen, F., 2005. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats.
Radiology, 234(3):756-764.


[20] Wilhelm, S.M., Carter, C., Tang, L., 2004. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.
Cancer Res, 64(19):7099-7109.


[21] Zhao, M., Pipe, J.G., Bonnett, J., 1996. Early detection of treatment response by diffusion-weighted
1H-NMR spectroscopy in a murine tumour
in vivo
.
Br J Cancer, 73(1):61-64.


Open peer comments: Debate/Discuss/Question/Opinion
<1>