Full Text:   <2791>

Summary:  <1739>

CLC number: Q291

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-04-18

Cited: 3

Clicked: 9952

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.5 P.455-465

http://doi.org/10.1631/jzus.B1400059


Mechanism and factors that control HIV-1 transcription and latency activation*


Author(s):  Rong-diao Liu, Jun Wu, Rui Shao, Yu-hua Xue

Affiliation(s):  . School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China

Corresponding email(s):   xueyuhua@xmu.edu.cn

Key Words:  HIV-1, Transcriptional elongation, RNA polymerase II, Tat, P-TEFb


Rong-diao Liu, Jun Wu, Rui Shao, Yu-hua Xue. Mechanism and factors that control HIV-1 transcription and latency activation[J]. Journal of Zhejiang University Science B, 2014, 15(5): 455-465.

@article{title="Mechanism and factors that control HIV-1 transcription and latency activation",
author="Rong-diao Liu, Jun Wu, Rui Shao, Yu-hua Xue",
journal="Journal of Zhejiang University Science B",
volume="15",
number="5",
pages="455-465",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400059"
}

%0 Journal Article
%T Mechanism and factors that control HIV-1 transcription and latency activation
%A Rong-diao Liu
%A Jun Wu
%A Rui Shao
%A Yu-hua Xue
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 5
%P 455-465
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400059

TY - JOUR
T1 - Mechanism and factors that control HIV-1 transcription and latency activation
A1 - Rong-diao Liu
A1 - Jun Wu
A1 - Rui Shao
A1 - Yu-hua Xue
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 5
SP - 455
EP - 465
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400059


Abstract: 
After reverse transcription, the HIV-1 proviral DNA is integrated into the host genome and thus subjected to transcription by the host RNA polymerase II (Pol II). With the identification and characterization of human p-TEFb in the late 1990s as a specific host cofactor required for HIV-1 transcription, it is now believed that the elongation stage of Pol II transcription plays a particularly important role in regulating HIV-1 gene expression. HIV-1 uses a sophisticated scheme to recruit human p-TEFb and other cofactors to the viral long terminal repeat (LTR) to produce full-length HIV-1 transcripts. In this process, p-TEFb is regulated by the reversible association with various transcription factors/cofactors to form several multi-subunit complexes (e.g., 7SK snRNP, super elongation complexes (SECs), and the Brd4-p-TEFb complex) that collectively constitute a p-TEFb network for controlling cellular and HIV-1 transcription. Recent progresses in HIV-1 transcription were reviewed in the paper, with the emphasis on the mechanism and factors that control HIV-1 transcription and latency activation.

调控HIV-1转录和潜伏激活的机制及相关因子

本文概要:(1)反式激活蛋白(Tat)是病毒复制的重要因子,正性转录延伸因子b(P-TEFb)是Tat反式激活HIV-1转录所必需的特异性宿主细胞因子,其活性与HIV-1的转录密切相关。(2)在细胞内,无活性7SK snRNP复合体是功能性有活性P-TEFb的贮存和来源。在特定条件下,7SK snRNP复合体发生解离并释放出P-TEFb,从而刺激转录延伸。可以说,P-TEFb的活性受到严格的调控,维持着一种动态的平衡。(3)同时,P-TEFb还存在于一个具有超高转录活性的超级延伸复合体(SEC)中。Tat能将含有两个延伸因子P-TEFb和ELL2的SEC复合体募集至HIV-1长末端结构域(LTR),然后众多因子协同作用有效地增强HIV-1的转录作用。(4)溴区包含蛋白4(Brd4)像Tat一样,将P-TEFb募集至众多细胞基因的启动子区域,促进转录。Brd4也可激活基础水平的HIV-1转录,却对依赖Tat的HIV-1转录具有抑制作用,因为Brd4和Tat竞争性地与P-TEFb结合。(5)鉴于Brd4对Tat依赖性HIV-1转录的抑制作用,寻找能够抑制Brd4的小分子药物,激活HIV-1潜伏,结合高效抗逆转录病毒治疗(HAART),使得彻底根除HIV-1变成可能。Brd4的抑制剂JQ1就是这样的一种小分子,并且已被证明可以在多种细胞模型中激活HIV-1潜伏。
关键词:人类免疫缺陷病毒(HIV-1);转录延伸;RNA聚合酶II;Tat;P-TEFb

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Archin, N.M., Liberty, A.L., Kashuba, A.D., 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature, 487(7408):482-485. 


[2] Banerjee, C., Archin, N., Michaels, D., 2012. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol, 92(6):1147-1154. 


[3] Barboric, M., Yik, J.H., Czudnochowski, N., 2007. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucl Acids Res, 35(6):2003-2012. 


[4] Bartholomeeusen, K., Xiang, Y., Fujinaga, K., 2012. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J Biol Chem, 287(43):36609-36616. 


[5] Baumli, S., Lolli, G., Lowe, E.D., 2008. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J, 27(13):1907-1918. 


[6] Bentley, D.L., Groudine, M., 1986. Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Mol Cell Biol, 6(10):3481-3489. 


[7] Biglione, S., Byers, S.A., Price, J.P., 2007. Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology, 4(1):47


[8] Bisgrove, D.A., Mahmoudi, T., Henklein, P., 2007. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. PNAS, 104(34):13690-13695. 


[9] Chen, R., Yang, Z., Zhou, Q., 2004. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem, 279(6):4153-4160. 


[10] Chiang, K., Rice, A.P., 2012. MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses, 4(12):1390-1409. 


[11] Chou, S., Upton, H., Bao, K., 2013. HIV-1 Tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold. PNAS, 110(2):E123-E131. 


[12] Delmore, J.E., Issa, G.C., Lemieux, M.E., 2011. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 146(6):904-917. 


[13] Dey, A., Ellenberg, J., Farina, A., 2000. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition. Mol Cell Biol, 20(17):6537-6549. 


[14] Dey, A., Chitsaz, F., Abbasi, A., 2003. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. PNAS, 100(15):8758-8763. 


[15] Dey, A., Nishiyama, A., Karpova, T., 2009. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell, 20(23):4899-4909. 


[16] Donahue, D.A., Wainberg, M.A., 2013. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology, 10(1):11


[17] Filippakopoulos, P., Qi, J., Picaud, S., 2010. Selective inhibition of BET bromodomains. Nature, 468(7327):1067-1073. 


[18] Fu, T.J., Peng, J., Lee, G., 1999. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem, 274(49):34527-34530. 


[19] Fuda, N.J., Ardehali, M.B., Lis, J.T., 2009. Defining mechanisms that regulate RNA polymerase II transcription in vivoNature, 461(7261):186-192. 


[20] Fujinaga, K., Irwin, D., Huang, Y., 2004. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol, 24(2):787-795. 


[21] Garber, M.E., Wei, P., Jones, K.A., 1998. HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol, 63:371-380. 


[22] Guenther, M.G., Levine, S.S., Boyer, L.A., 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130(1):77-88. 


[23] Guo, J., Price, D.H., 2013. RNA polymerase II transcription elongation control. Chem Rev, 113(11):8583-8603. 


[24] Hakre, S., Chavez, L., Shirakawa, K., 2012. HIV latency: experimental systems and molecular models. FEMS Microbiol Rev, 36(3):706-716. 


[25] He, N., Pezda, A.C., Zhou, Q., 2006. Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation. Mol Cell Biol, 26(19):7068-7076. 


[26] He, N., Jahchan, N.S., Hong, E., 2008. A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol Cell, 29(5):588-599. 


[27] He, N., Liu, M., Hsu, J., 2010. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell, 38(3):428-438. 


[28] He, N., Chan, C.K., Sobhian, B., 2011. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. PNAS, 108(36):E636-E645. 


[29] Ivanov, D., Kwak, Y.T., Nee, E., 1999. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. J Mol Biol, 288(1):41-56. 


[30] Ivanov, D., Kwak, Y.T., Guo, J., 2000. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol, 20(9):2970-2983. 


[31] Jang, M.K., Mochizuki, K., Zhou, M., 2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell, 19(4):523-534. 


[32] Jeanmougin, F., Wurtz, J.M., Le Douarin, B., 1997. The bromodomain revisited. Trends Biochem Sci, 22(5):151-153. 


[33] Jeronimo, C., Forget, D., Bouchard, A., 2007. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell, 27(2):262-274. 


[34] Jiang, Y.W., Veschambre, P., Erdjument-Bromage, H., 1998. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. PNAS, 95(15):8538-8543. 


[35] Jones, K.A., 1997. Taking a new TAK on tat transactivation. Genes Dev, 11(20):2593-2599. 


[36] Jones, K.A., Peterlin, B.M., 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem, 63(1):717-743. 


[37] Kao, S.Y., Calman, A.F., Luciw, P.A., 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature, 330(6147):489-493. 


[38] Karn, J., 1999. Tackling tat. J Mol Biol, 293(2):235-254. 


[39] Karn, J., 2011. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS, 6(1):4-11. 


[40] Kim, J., Guermah, M., Roeder, R.G., 2010. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell, 140(4):491-503. 


[41] Kuras, L., Struhl, K., 1999. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature, 399(6736):609-613. 


[42] Li, Q., Price, J.P., Byers, S.A., 2005. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J Biol Chem, 280(31):28819-28826. 


[43] Li, Z., Guo, J., Wu, Y., 2013. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucl Acids Res, 41(1):277-287. 


[44] Lin, C., Smith, E.R., Takahashi, H., 2010. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell, 37(3):429-437. 


[45] Liu, M., Hsu, J., Chan, C., 2012. The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell, 46(3):325-334. 


[46] Lu, H., Li, Z., Xue, Y., 2014. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. PNAS, 111(1):E15-E24. 


[47] Mancebo, H.S., Lee, G., Flygare, J., 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitroGenes Dev, 11(20):2633-2644. 


[48] Markert, A., Grimm, M., Martinez, J., 2008. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep, 9(6):569-575. 


[49] Marshall, N.F., Price, D.H., 1995. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem, 270(21):12335-12338. 


[50] Marshall, N.F., Peng, J., Xie, Z., 1996. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem, 271(43):27176-27183. 


[51] Mbonye, U.R., Gokulrangan, G., Datt, M., 2013. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4+ T lymphocytes. PLoS Pathog, 9(5):e1003338


[52] Michels, A.A., Nguyen, V.T., Fraldi, A., 2003. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol, 23(14):4859-4869. 


[53] Michels, A.A., Fraldi, A., Li, Q., 2004. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J, 23(13):2608-2619. 


[54] Mochizuki, K., Nishiyama, A., Jang, M.K., 2008. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J Biol Chem, 283(14):9040-9048. 


[55] Muse, G.W., Gilchrist, D.A., Nechaev, S., 2007. RNA polymerase is poised for activation across the genome. Nat Genet, 39(12):1507-1511. 


[56] Natarajan, M., August, A., Henderson, A.J., 2010. Combinatorial signals from CD28 differentially regulate human immunodeficiency virus transcription in T cells. J Biol Chem, 285(23):17338-17347. 


[57] Nguyen, V.T., Kiss, T., Michels, A.A., 2001. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature, 414(6861):322-325. 


[58] Peng, J., Zhu, Y., Milton, J.T., 1998. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev, 12(5):755-762. 


[59] Prelich, G., 2002. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot Cell, 1(2):153-162. 


[60] Ptashne, M., 2005. Regulation of transcription: from lambda to eukaryotes. Trends Biochem Sci, 30(6):275-279. 


[61] Rahl, P.B., Lin, C.Y., Seila, A.C., 2010. c-Myc regulates transcriptional pause release. Cell, 141(3):432-445. 


[62] Richman, D.D., Margolis, D.M., Delaney, M., 2009. The challenge of finding a cure for HIV infection. Science, 323(5919):1304-1307. 


[63] Roberts, J.D., Bebenek, K., Kunkel, T.A., 1988. The accuracy of reverse transcriptase from HIV-1. Science, 242(4882):1171-1173. 


[64] Rougvie, A.E., Lis, J.T., 1988. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell, 54(6):795-804. 


[65] Ruelas, D.S., Greene, W.C., 2013. An integrated overview of HIV-1 latency. Cell, 155(3):519-529. 


[66] Saunders, A., Core, L.J., Lis, J.T., 2006. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol, 7(8):557-567. 


[67] Sedore, S.C., Byers, S.A., Biglione, S., 2007. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucl Acids Res, 35(13):4347-4358. 


[68] Shilatifard, A., Lane, W.S., Jackson, K.W., 1996. An RNA polymerase II elongation factor encoded by the human ELL gene. Science, 271(5257):1873-1876. 


[69] Shilatifard, A., Duan, D.R., Haque, D., 1997. ELL2, a new member of an ELL family of RNA polymerase II elongation factors. PNAS, 94(8):3639-3643. 


[70] Siliciano, R.F., Greene, W.C., 2011. HIV latency. Cold Spring Harb Perspect Med, 1(1):a007096


[71] Sobhian, B., Laguette, N., Yatim, A., 2010. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell, 38(3):439-451. 


[72] Suñ, C., Goldstrohm, A.C., Peng, J., 2000. An in vitro transcription system that recapitulates equine infectious anemia virus Tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation. Virology, 274(2):356-366. 


[73] Wassarman, D.A., Steitz, J.A., 1991. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol, 11(7):3432-3445. 


[74] Wu, C.H., Yamaguchi, Y., Benjamin, L.R., 2003. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in DrosophilaGenes Dev, 17(11):1402-1414. 


[75] Wu, S.Y., Chiang, C.M., 2007. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem, 282(18):13141-13145. 


[76] Xue, Y., Yang, Z., Chen, R., 2010. A capping-independent function of MePCE in stabilizing 7SK snRNA and facilitating the assembly of 7SK snRNP. Nucl Acids Res, 38(2):360-369. 


[77] Yamaguchi, Y., Shibata, H., Handa, H., 2013. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. Biochim Biophys Acta, 1829(1):98-104. 


[78] Yang, Z., Zhu, Q., Luo, K., 2001. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature, 414(6861):317-322. 


[79] Yang, Z., Yik, J.H., Chen, R., 2005. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell, 19(4):535-545. 


[80] Yik, J.H., Chen, R., Nishimura, R., 2003. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell, 12(4):971-982. 


[81] Yik, J.H., Chen, R., Pezda, A.C., 2004. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol, 24(12):5094-5105. 


[82] Zheng, Y.H., Lovsin, N., Peterlin, B.M., 2005. Newly identified host factors modulate HIV replication. Immunol Lett, 97(2):225-234. 


[83] Zhou, Q., Yik, J.H., 2006. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev, 70(3):646-659. 


[84] Zhu, J., Gaiha, G.D., John, S.P., 2012. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep, 2(4):807-816. 


[85] Zhu, Y., Peery, T., Peng, J., 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitroGenes Dev, 11(20):2622-2632. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE