References
[1] Chang, J.H., Jiao, X., Chiba, K., 2012. Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity. 
Nat Struct Mol Biol, 19(10):1011-1017. 


 [2] Coller, J., Parker, R., 2004. Eukaryotic mRNA decapping. 
Annu Rev Biochem, 73(1):861-890. 


 [3] Cowling, V.H., 2010. Myc up-regulates formation of the mRNA methyl cap. 
Biochem Soc Trans, 38(6):1598-1601. 


 [4] Cowling, V.H., Cole, M.D., 2007. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. 
Mol Cell Biol, 27(6):2059-2073. 


 [5] Cowling, V.H., Cole, M.D., 2010. Myc regulation of mRNA cap methylation. 
Genes Cancer, 1(6):576-579. 


 [6] Dunckley, T., Parker, R., 1999. The DCP2 protein is required for mRNA decapping in 
Saccharomyces cerevisiae and contains a functional MutT motif. 
EMBO J, 18(19):5411-5422. 


 [7] Furuichi, Y., Shatkin, A.J., 2000. Viral and cellular mRNA capping: past and prospects. 
Adv Virus Res, 55:135-184. 


 [8] Hocine, S., Singer, R.H., Grunwald, D., 2010. RNA processing and export. 
Cold Spring Harb Perspect Biol, 2(12):a000752


 [9] Houseley, J., Tollervey, D., 2009. The many pathways of RNA degradation. 
Cell, 136(4):763-776. 


 [10] Huh, W.K., Falvo, J.V., Gerke, L.C., 2003. Global analysis of protein localization in budding yeast. 
Nature, 425(6959):686-691. 


 [11] Jiao, X., Xiang, S., Oh, C., 2010. Identification of a quality-control mechanism for mRNA 5′-end capping. 
Nature, 467(7315):608-611. 


 [12] Jiao, X., Chang, J.H., Kilic, T., 2013. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. 
Mol Cell, 50(1):104-115. 


 [13] Jimeno-Gonzalez, S., Haaning, L.L., Malagon, F., 2010. The yeast 5′-3′ exonuclease Rat1p functions during transcription elongation by RNA polymerase II. 
Mol Cell, 37(4):580-587. 


 [14] Johnson, A.W., 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. 
Mol Cell Biol, 17(10):6122-6130. 

 [15] Kim, M., Krogan, N.J., Vasiljeva, L., 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. 
Nature, 432(7016):517-522. 


 [16] Li, Y., Song, M., Kiledjian, M., 2011. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. 
RNA, 17(3):419-428. 


 [17] Lykke-Andersen, J., 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. 
Mol Cell Biol, 22(23):8114-8121. 


 [18] Merrick, W.C., 2004. Cap-dependent and cap-independent translation in eukaryotic systems. 
Gene, 332:1-11. 


 [19] Meyer, S., Temme, C., Wahle, E., 2004. Messenger RNA turnover in eukaryotes: pathways and enzymes. 
Crit Rev Biochem Mol Biol, 39(4):197-216. 


 [20] Poole, T.L., Stevens, A., 1995. Comparison of features of the RNase activity of 5′-exonuclease-1 and 5′-exonuclease-2 of 
Saccharomyces cerevisiae
					. 
Nucl Acids Symp Ser, 33:79-81. 
 [21] Shatkin, A.J., 1976. Capping of eucaryotic mRNAs. 
Cell, 9(4):645-653. 


 [22] Shuman, S., 1995. Capping enzyme in eukaryotic mRNA synthesis. 
Prog Nucl Acid Res Mol Biol, 50:101-129. 

 [23] Song, M.G., Li, Y., Kiledjian, M., 2010. Multiple mRNA decapping enzymes in mammalian cells. 
Mol Cell, 40(3):423-432. 


 [24] Stevens, A., 1978. An exoribonuclease from 
Saccharomyces cerevisiae: effect of modifications of 5′ end groups on the hydrolysis of substrates to 5′ mononucleotides. 
Biochem Biophys Res Commun, 81(2):656-661. 


 [25] Stevens, A., Poole, T.L., 1995. 5′-Exonuclease-2 of 
Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. 
J Biol Chem, 270(27):16063-16069. 


 [26] Wang, Z., Jiao, X., Carr-Schmid, A., 2002. The hDcp2 protein is a mammalian mRNA decapping enzyme. 
PNAS, 99(20):12663-12668. 


 [27] Wen, Y., Shatkin, A.J., 2000. Cap methyltransferase selective binding and methylation of GpppG-RNA are stimulated by importin-α. 
Genes Dev, 14(23):2944-2949. 


 [28] Xiang, S., Cooper-Morgan, A., Jiao, X., 2009. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. 
Nature, 458(7239):784-788. 


 [29] Xue, Y., Bai, X., Lee, I., 2000. 
						
Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. 
Mol Cell Biol, 20(11):4006-4015. 


 [30] Yang, W., 2011. Nucleases: diversity of structure, function and mechanism. 
Q Rev Biophys, 44(1):1-93. 


 [31] Yue, Z., Maldonado, E., Pillutla, R., 1997. Mammalian capping enzyme complements mutant 
Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. 
PNAS, 94(24):12898-12903. 


 [32] Zheng, D., Chen, C.Y., Shyu, A.B., 2011. Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. 
RNA, 17(9):1619-1634. 


 
Open peer comments: Debate/Discuss/Question/Opinion
<1>