CLC number: X52
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-03-10
Cited: 4
Clicked: 5261
Fan Bu, Xiang Hu, Li Xie, Qi Zhou. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal[J]. Journal of Zhejiang University Science B, 2015, 16(4): 304-316.
@article{title="Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal",
author="Fan Bu, Xiang Hu, Li Xie, Qi Zhou",
journal="Journal of Zhejiang University Science B",
volume="16",
number="4",
pages="304-316",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400106"
}
%0 Journal Article
%T Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal
%A Fan Bu
%A Xiang Hu
%A Li Xie
%A Qi Zhou
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 4
%P 304-316
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400106
TY - JOUR
T1 - Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal
A1 - Fan Bu
A1 - Xiang Hu
A1 - Li Xie
A1 - Qi Zhou
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 4
SP - 304
EP - 316
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400106
Abstract: The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.
[1]APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. APHA, Washington, DC.
[2]Bernet, N., Habouzit, F., Moletta, R., 1996. Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater. Appl. Microbiol. Biotechnol., 46(1):92-97.
[3]Cappai, G., Carucci, A., Onnis, A., 2004. Use of industrial wastewaters for the optimization and control of nitrogen removal processes. Water Sci. Technol., 50(6):17-24.
[4]Chae, S.R., Lee, S.H., Kim, J.O., et al., 2004. Simultaneous removal of organic and strong nitrogen from sewage in a pilot-scale BNR process supplemented with food waste. Water Sci. Technol., 49(5-6):257-264.
[5]Dubois, M., Gilles, K.A., Hamilton, J.K., et al., 1956. Colorimetric method for determination of sugar and related substance. Anal. Chem., 28(3):350-356.
[6]Fang, H.H.P., Zhang, T., Liu, Y., 2002. Characterization of an acetate degrading sludge without intracellular accumulation of polyphosphate and glycogen. Water Res., 36(13):3211-3218.
[7]Henze, M., Harremoës, P., la Cour Jansen, J., et al., 1995. Wastewater Treatment: Biological and Chemical Processes. Springer Verlag, Berlin.
[8]Hinojosa, J., Riffat, R., Fink, S., et al., 2008. Estimating the kinetics and stoichiometry of heterotrophic denitrifying bacteria with glycerol as an external carbon source. Proceedings of the 81st Annual WEF Technical Exhibition and Conference, Chicago, USA. Water Environment Federation, Alexandria, USA, p.274-288.
[9]Kampas, P., Parsons, S.A., Pearce, P., et al., 2009. An internal carbon source for improving biological nutrient removal. Bioresour. Technol., 100(1):149-154.
[10]Kuba, T., Murnleitner, E., van Loosdrecht, M.C.M., et al., 1996a. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng., 52(6):685-695.
[11]Kuba, T., van Loosdrecht, M.C.M., Heijnen, J.J., 1996b. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res., 30(7):1702-1710.
[12]Lee, C.Y., Shin, H.S., Chae, S.R., et al., 2003. Nutrient removal using anaerobically fermented leachate of food waste in the BNR process. Water Sci. Technol., 47(1):159-165.
[13]Lemos, P.C., Serafim, L.S., Santos, M., et al., 2003. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance. Appl. Environ. Microbiol., 69(1):241-251.
[14]Li, H.J., Chen, Y.G., Gu, G.W., 2008. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. Bioresour. Technol., 99(10):4400-4407.
[15]Lim, S.J., Choi, D.W., Lee, W.G., et al., 2000. Volatile fatty acids production from food waste and its application to biological nutrient removal. Bioprocess. Eng., 22(6):543-545.
[16]Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1):265-275.
[17]Makinia, J., Drewnowski, J., Swinarski, M., et al., 2012. The impact of precipitation and external carbon source addition on biological nutrient removal in activated sludge systems—experimental investigation and mathematical modeling. Water Pract. Tech., 7(1).
[18]Monclús, H., Sipma, J., Ferrero, G., et al., 2010. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal. Bioresour. Technol., 101(11):3984-3991.
[19]Monteith, H.D., Bridle, T.R., Sutton, P.M., 1980. Industrial waste carbon sources for biological denitrification. Progress Water Technol., 12(6):127-141.
[20]Oehmen, A., Yuan, Z.G., Blackall, L.L., et al., 2005a. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng., 91(2):162-168.
[21]Oehmen, A., Keller-Lehmann, B., Zeng, R.J., et al., 2005b. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J. Chromatogr. A, 1070(1-2):131-136.
[22]Oehmen, A., Lemos, P.C., Carvalho, G., et al., 2007. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res., 41(11):2271-2300.
[23]Oh, J., Silverstein, J., 1999. Acetate limitation and nitrite accumulation during denitrification. J. Environ. Eng., 125(3):234-242.
[24]Peng, Y.Z., Wang, X.L., Li, B.K., 2006. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination, 189(1-3):155-164.
[25]Pijuan, M., Casas, C., Baettrrza, J.A., 2009. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochem., 44(1):97-105.
[26]Quan, Z., Jin, Y., Yin, C., et al., 2005. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresour. Technol., 96(15):1690-1695.
[27]Rodríguez, L., Villasenor, J., Buendia, I.M., et al., 2007a. Re-use of winery wastewaters for biological nutrient removal. Water Sci. Technol., 56(2):95-102.
[28]Rodríguez, L., Villasenor, J., Fernandez, F.J., 2007b. Use of agro-food wastewaters for the optimisation of the denitrification process. Water Sci. Technol., 55(10):63-70.
[29]Sage, M., Daufin, G., Gesan-Guiziou, G., 2006. Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water Res., 40(14):2747-2755.
[30]Swinarski, M., Mąkinia, J., Czerwionka, K., et al., 2009a. Comparison of the effects of conventional and alternative external carbon sources for enhancing of the denitrification process. Water Environ. Res., 81(9):896-906.
[31]Swinarski, M., Mąkinia, J., Czerwionka, K., et al., 2009b. Industrial wastewater as an external carbon source for optimization of nitrogen removal at the “Wschód” WWTP in Gdańsk (Poland). Water Sci. Technol., 59(1):57-64.
[32]Thomas, M., Wright, P., Blackall, L., et al., 2003. Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Sci. Technol., 47(12):141-148.
[33]Wachtmeister, A., Kuba, T., van Loosdrecht, M.C.M., et al., 1997. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Res., 31(3):471-478.
[34]Wang, Y.Y., Geng, J.J., Guo, G., et al., 2011. N2O production in anaerobic/anoxic denitrifying phosphorus removal process: the effects of carbon sources shock. Chem. Eng. J., 172(2-3):999-1007.
[35]Zhou, Y., Pijuan, M., Zeng, R., et al., 2008. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environ. Sci. Technol., 42(22):8260-8265.
Open peer comments: Debate/Discuss/Question/Opinion
<1>