Full Text:   <2751>

Summary:  <1871>

Suppl. Mater.: 

CLC number: R187+.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-06-18

Cited: 0

Clicked: 3869

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ying Yi

http://orcid.org/0000-0001-8419-8875

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.7 P.526-536

http://doi.org/10.1631/jzus.B1500327


A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes


Author(s):  Ying Yi, Li-mei Hao, Shu-ren Ma, Jin-hui Wu, Tao Wang, Song Lin, Zong-xing Zhang, Jian-cheng Qi

Affiliation(s):  Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, China; more

Corresponding email(s):   qijch@npec.org.cn

Key Words:  Bacillus atrophaeus, Chlorine dioxide, Gaseous disinfectant, Gastrointestinal endoscope, Long and narrow channel


Ying Yi, Li-mei Hao, Shu-ren Ma, Jin-hui Wu, Tao Wang, Song Lin, Zong-xing Zhang, Jian-cheng Qi. A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes[J]. Journal of Zhejiang University Science B, 2016, 17(7): 526-536.

@article{title="A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes",
author="Ying Yi, Li-mei Hao, Shu-ren Ma, Jin-hui Wu, Tao Wang, Song Lin, Zong-xing Zhang, Jian-cheng Qi",
journal="Journal of Zhejiang University Science B",
volume="17",
number="7",
pages="526-536",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500327"
}

%0 Journal Article
%T A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes
%A Ying Yi
%A Li-mei Hao
%A Shu-ren Ma
%A Jin-hui Wu
%A Tao Wang
%A Song Lin
%A Zong-xing Zhang
%A Jian-cheng Qi
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 7
%P 526-536
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500327

TY - JOUR
T1 - A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes
A1 - Ying Yi
A1 - Li-mei Hao
A1 - Shu-ren Ma
A1 - Jin-hui Wu
A1 - Tao Wang
A1 - Song Lin
A1 - Zong-xing Zhang
A1 - Jian-cheng Qi
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 7
SP - 526
EP - 536
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500327


Abstract: 
Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disinfectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the sporicidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: RH, exposure dosage, organic burden, and the FR through the channel significantly (P<0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% RH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes.

应用二氧化氯气体消毒消化内镜的初步研究

目的:以大型消化内镜中心控制消化内镜消毒成本的需求为牵引,评价二氧化氯气体应用于消化内镜消毒的可行性。
创新点:首次研究了二氧化氯气体对细长管腔内部的消毒效果及其影响因素,并以此为基础研究了采用主动灌流方法的二氧化氯气体消毒消化内镜的原型机。
方法:设计了一种聚四氟乙烯(PTFE)细长管腔实验装置(长2 m,内径1 mm),在其进气端、中部和出气端分别设置PTFE菌片容器。将含有PTFE菌片和细长管腔和置于平皿内的PTFE菌片装载于一种消毒实验原型机中,通过主动灌流使二氧化氯气体流过细长管腔,平皿内的PTFE菌片直接曝露于二氧化氯气体中,分别评价二氧化氯气体对PTFE细长管腔内壁和外壁的消毒效果。以萎缩芽孢杆菌为指示微生物,评价二氧化氯剂量(浓度与时间的乘积)、相对湿度、流过细长管腔的流量及有机干扰物对消毒效果的影响。同时使用实验原型机对8条消化内镜进行了实效验证实验。
结论:实验结果表明,除了相对湿度、二氧化氯剂量和有机干扰物都显著影响二氧化氯气体的消毒效果外(图3、5和6),随着经过细长管腔流量的增大,二氧化氯气体对细长管腔内部的芽孢杀灭对数值有减小的趋势(图4)。按照本文设计的流程,应用实验原型机对8条消化内镜消毒后,未检出存活的微生物。应用二氧化氯气体消毒消化内镜时,其每条内镜的消毒剂成本小于3元人民币。

关键词:二氧化氯;气体消毒剂;消化内镜;细长管腔;萎缩芽孢杆菌

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]de Groote, M.A., Gibbs, S., de Moura, V.C., et al., 2014. Analysis of a panel of rapidly growing mycobacteria for resistance to aldehyde-based disinfectants. Am. J. Infect. Control, 42(8):932-934.

[2]Edmiston, C.E.Jr., Spencer, M., 2014. Endoscope reprocessing in 2014: why is the margin of safety so small? AORN J., 100(6):609-615.

[3]Eylath, A., Madhogarhia, E., Rivera, E., et al., 2003a. Successful sterilization using chlorine dioxide gas: Part one—sanitizing as aseptic fill isolator. BioProcess Int., 1(7):52-55.

[4]Eylath, A., Madhogarhia, E., Lorcheim, P., et al., 2003b. Successful sterilization using chlorine dioxide gas: Part two—cleaning process vessels. BioProcess Int., 1(8):54-56.

[5]Jeng, D.K., Woodworth, A.G., 1990. Chlorine dioxide gas sterilization under square-wave conditions. Appl. Environ. Microbiol., 56(2):514-519.

[6]Jia, H.Q., Wu, J.H., Yi, Y., et al., 2013. Evaluation of gaseous chlorine dioxide fumigation for enclosed space decontamination. Mil. Med. Sci., 37(1):33-38 (in Chinese).

[7]Jin, R.Y., Hu, S.Q., Chi, Z.C., 2011. Effect of chlorine dioxide gas treatment on surface sterilization of grape. Adv. Mater. Res., 236:2939-2944.

[8]Kowalski, J.B., 1998. Sterilization of medical devices, pharmaceutical components, and barrier isolator systems with gaseous chlorine dioxide. In: Morrissey, R.F., Kowalski, J.B. (Eds.), Sterilization of Medical Products. Polyscience Publications, New York, p.313-323.

[9]Li, Y.J., Zhu, N., Jia, H.Q., et al., 2012. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(4):254-260.

[10]Lowe, J.J., Gibbs, S.G., Iwen, P.C., et al., 2013a. Decontamination of a hospital room using gaseous chlorine dioxide: Bacillus anthracis, Francisella tularensis, and Yersinia pestis. J. Occup. Environ. Hyg., 10(10):533-539.

[11]Lowe, J.J., Hewlett, A.L., Iwen, P.C., et al., 2013b. Evaluation of ambulance decontamination using gaseous chlorine dioxide. Prehosp. Emerg. Care, 17(3):401-408.

[12]Lowe, J.J., Gibbs, S.G., Iwen, P.C., et al., 2013c. Impact of chlorine dioxide gas sterilization on nosocomial organism viability in a hospital room. Int. J. Environ. Res. Public Health, 10(6):2596-2605.

[13]Luftman, H.S., Regits, M.A., 2008. B. atrophaeus and G. stearothermophilus biological indicators for chlorine dioxide gas decontamination. Appl. Biosafety, 13(3):143-157.

[14]Luftman, H.S., Regits, M.A., Lorcheim, P., et al., 2008. Validation study for the use of chlorine dioxide gas as a decontaminant for biological safety cabinets. Appl. Biosafety, 13(4):199-212.

[15]Mahmoud, B., Vaidya, N.A., Corvalan, C.M., 2008. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas. Food Microbiol., 25(7):857-865.

[16]Nam, H., Seo, H.S., Bang, J., et al., 2014. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. Int. J. Food Microbiol., 188:122-127.

[17]Ofstead, C.L., Wetzler, H.P., Doyle, E.M., et al., 2015. Persistent contamination on colonoscopes and gastroscopes detected by biologic cultures and rapid indicators despite reprocessing performed in accordance with guidelines. Am. J. Infect. Control, 43(8):794-801.

[18]Park, S.H., Kang, D.H., 2015a. Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity. LWT-Food Sci. Technol., 60(1):186-191.

[19]Park, S.H., Kang, D.H., 2015b. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes. Int. J. Food Microbiol., 207:103-108.

[20]Petersen, B.T., Chennat, J., Cohen, J., et al., 2011. Multisociety guideline on reprocessing flexible gastrointestinal endoscopes: 2011. Gastrointest. Endosc., 73(6):1075-1084.

[21]Qiu, L.J., Zhou, Z.H., Liu, Q.F., et al., 2015. Investigating the failure of repeated standard cleaning and disinfection of a Pseudomonas aeruginosa-infected pancreatic and biliary endoscope. Am. J. Infect. Control, 43(8):e43-e46.

[22]Ribeiro, M., Oliveira, A., 2012. Analysis of the air/water channels of gastrointestinal endoscopies as a risk factor for the transmission of microorganisms among patients. Am. J. Infect. Control, 40(10):913-916.

[23]Rutala, W.A., Weber, D.J., 2014. Gastrointestinal endoscopes: a need to shift from disinfection to sterilization? JAMA, 312(14):1405-1406.

[24]Sella, S.R., Vandenberghe, L.P., Soccol, C.R., 2015. Bacillus atrophaeus: main characteristics and biotechnological applications—a review. Crit. Rev. Biotechnol., 35(4):533-545.

[25]US EPA, 2004. CDG research corporation bench-scale chlorine dioxide gas: solid generator. Technical Report No. EPA/600/R-11/199, ETV Building Decontamination Technology Center, US Environmental Protection Agency, Washington, D.C.

[26]US EPA, 2006. Reregistration eligibility decision (RED) for chlorine dioxide and sodium chlorite (Case 4023). Technical Report No. EPA/738/R-06/007, Antimicrobials Division, US Environmental Protection Agency, Washington, D.C.

[27]US EPA, 2010. Compatibility of material and electronic equipment with chlorine dioxide fumigation. Technical Report No. EPA/600/R-10/037, Office of Research and Development, US Environmental Protection Agency, New Caledonia.

[28]Wang, Y.Q., Sun, L.Q., Liu, X.J., et al., 2015. Evaluation of disinfection effect of chlorine dioxide gas on biosafety levels-III laboratory. Chin. J. Disinfec., 32(1):13-15 (in Chinese).

[29]Wu, J.H., Yi, Y., Jia, H.Q., et al., 2012. Effect of gaseous chlorine dioxide on disinfection of laboratory microenvironment. Chin. J. Nosocomiol., 22(2):331-334 (in Chinese).

[30]Young, S.B., Setlow, P., 2003. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J. Appl. Microbiol., 95(1):54-67.

[31]Zhang, X.L., Kong, J.Y., Tang, P., et al., 2011. Current status of cleaning and disinfection for gastrointestinal endoscopy in China: a survey of 122 endoscopy units. Digest. Liver Dis., 43(4):305-308.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE