Full Text:   <3436>

Summary:  <1556>

CLC number: R764.45

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-01-10

Cited: 0

Clicked: 5949

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Nicole Peter

https://orcid.org/0000-0002-3511-3334

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2019 Vol.20 No.2 P.116-130

http://doi.org/10.1631/jzus.B1700117


Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques


Author(s):  Nicole Peter, Tobias Kleinjung

Affiliation(s):  Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zrich, Zrich 8091, Switzerland

Corresponding email(s):   nicole.peter-siegrist@usz.ch, tobias.kleinjung@usz.ch

Key Words:  Tinnitus, Neuromodulation, Invasive technique, Non-invasive technique


Nicole Peter, Tobias Kleinjung. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques[J]. Journal of Zhejiang University Science B, 2019, 20(2): 116-130.

@article{title="Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques",
author="Nicole Peter, Tobias Kleinjung",
journal="Journal of Zhejiang University Science B",
volume="20",
number="2",
pages="116-130",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700117"
}

%0 Journal Article
%T Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques
%A Nicole Peter
%A Tobias Kleinjung
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 2
%P 116-130
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700117

TY - JOUR
T1 - Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques
A1 - Nicole Peter
A1 - Tobias Kleinjung
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 2
SP - 116
EP - 130
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700117


Abstract: 
tinnitus is defined as a perception of sound without any external sound source. Chronic tinnitus is a frequent condition that can affect the quality of life. So far, no causal cure for tinnitus has been documented, and most pharmacologic and psychosomatic treatment modalities aim to diminish tinnitus’ impact on the quality of life. neuromodulation, a novel therapeutic modality, which aims at alternating nerve activity through a targeted delivery of a stimulus, has emerged as a potential option in tinnitus treatment. This review provides a brief overview of the current neuromodulation techniques as tinnitus treatment options. The main intention is to provide updated knowledge especially for medical professionals counselling tinnitus patients in this emerging field of medicine. Non-invasive methods such as repetitive transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and transcutaneous vagus nerve stimulation were included, as well as invasive methods such as implanted vagus nerve stimulation and invasive brain stimulation. Some of these neuromodulation techniques revealed promising results; nevertheless, further research is needed, especially regarding the pathophysiological principle as to how these neuromodulation techniques work and what neuronal change they induce. Various studies suggest that individually different brain states and networks are involved in the generation and perception of tinnitus. Therefore, in the future, individually tailored neuromodulation strategies could be a promising approach in tinnitus treatment for achieving a more substantial and longer lasting improvement of complaints.

神经调节方法治疗耳鸣 --侵入性和非侵入性技术概述

概要:耳鸣被定义为非外部声音产生的听觉感知,慢性耳鸣是一种影响生活质量的常见病症.目前为止,尚无任何针对耳鸣诱因的治疗方法,大部分的药理和心理治疗方法都旨在减少耳鸣对生活质量的影响.神经调节是一种新型的治疗方式,该方法通过定向刺激来改变神经活动,已经成为耳鸣治疗的一个潜在选择.本文就当前神经调节技术治疗耳鸣做了简要概述,主要目的是为相关人士提供更新的知识介绍,特别是在这个新兴医学领域的专业工作者.本文介绍了包括经颅磁重复刺激、经颅电刺激、神经反馈和经皮迷走神经刺激等非侵入性方法,以及植入的迷走神经刺激和侵入性脑刺激等侵入性方法.虽然一些研究已经展示了神经调节技术的良好应用前景,但是相关的研究还需要加强,尤其是关于神经调节的病理生理学原理,即这些神经调节技术如何发挥作用以及神经调节所引起的神经元变化.多项研究表明,不同个体的大脑活动状态和神经连接网络都参与了对耳鸣的产生和感知.因此,未来个性化定制的神经调节策略可能是一个有前景的耳鸣治疗方法,从而更显著、更持久地改善这个常见病症状.

关键词:耳鸣;神经调节;侵入性方法;非侵入性方法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adjamian P, Hall DA, Palmer AR, et al., 2014. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci Biobehav Rev, 45:119-133.

[2]Anders M, Dvorakova J, Rathova L, et al., 2010. Efficacy of repetitive transcranial magnetic stimulation for the treatment of refractory chronic tinnitus: a randomized, placebo controlled study. Neuro Endocrinol Lett, 31(2):238-249.

[3]Axelsson A, Ringdahl A, 1989. Tinnitus—a study of its prevalence and characteristics. Br J Audiol, 23(1):53-62.

[4]Bittar RG, Burn SC, Bain PG, et al., 2005a. Deep brain stimulation for movement disorders and pain. J Clin Neurosci, 12(4):457-463.

[5]Bittar RG, Kar-Purkayastha I, Owen SL, et al., 2005b. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci, 12(5):515-519.

[6]Chen R, Classen J, Gerloff C, et al., 1997. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48(5):1398-1403.

[7]Cheung SW, Larson PS, 2010. Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience, 169(4):1768-1778.

[8]Chung HK, Tsai CH, Lin YC, et al., 2012. Effectiveness of theta-burst repetitive transcranial magnetic stimulation for treating chronic tinnitus. Audiol Neurotol, 17(2):112-120.

[9]Claes L, Stamberger H, van de Heyning P, et al., 2014. Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plast, 2014:436713.

[10]Crocetti A, Forti S, Del Bo L, 2011. Neurofeedback for subjective tinnitus patients. Auris Nasus Larynx, 38(6):735-738.

[11]Datta A, Bansal V, Diaz J, et al., 2009. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul, 2(4):201-207.

[12]Davis A, Rafaie EA, 2000. Epidemiology of tinnitus. In: Tyler RS (Ed.), Tinnitus Handbook. Singular, San Diego, CA.

[13]de Ridder D, Vanneste S, 2012. EEG driven tDCS versus bifrontal tDCS for tinnitus. Front Psychiatry, 3:84.

[14]de Ridder D, Vanneste S, 2014. Targeting the parahippocampal area by auditory cortex stimulation in tinnitus. Brain Stimul, 7(5):709-717.

[15]de Ridder D, de Mulder G, Walsh V, et al., 2004. Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus: case report. J Neurosurg, 100(3):560-564.

[16]de Ridder D, de Mulder G, Verstraeten E, et al., 2006. Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec, 68(1):48-54, discussion 54-55.

[17]de Ridder D, van der Loo E, van der Kelen K, et al., 2007a. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci, 4(5):237-241.

[18]de Ridder D, van der Loo E, van der Kelen K, et al., 2007b. Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially? Int J Med Sci, 4(5):242-246.

[19]de Ridder D, Elgoyhen AB, Romo R, et al., 2011a. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA, 108(20):8075-8080.

[20]de Ridder D, van der Loo E, Vanneste S, et al., 2011b. Theta-gamma dysrhythmia and auditory phantom perception. J Neurosurg, 114(4):912-921.

[21]de Ridder D, Song JJ, Vanneste S, 2013. Frontal cortex TMS for tinnitus. Brain Stimul, 6(3):355-362.

[22]de Ridder D, Vanneste S, Weisz N, et al., 2014a. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev, 44:16-32.

[23]de Ridder D, Vanneste S, Engineer ND, et al., 2014b. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation, 17(2):170-179.

[24]de Ridder D, Kilgard M, Engineer N, et al., 2015a. Placebo-controlled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report. Otol Neurotol, 36(4):575-580.

[25]de Ridder D, Vanneste S, Langguth B, et al., 2015b. Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol, 6:124.

[26]de Ridder D, Joos K, Vanneste S, 2016. Anterior cingulate implants for tinnitus: report of 2 cases. J Neurosurg, 124(4):893-901.

[27]Dobie RA, 2003. Depression and tinnitus. Otolaryngol Clin North Am, 36(2):383-388.

[28]Dohrmann K, Weisz N, Schlee W, et al., 2007a. Neurofeedback for treating tinnitus. Prog Brain Res, 166:473-485.

[29]Dohrmann K, Elbert T, Schlee W, et al., 2007b. Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci, 25(3-4):371-378.

[30]Edwards D, Cortes M, Datta A, et al., 2013. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage, 74:266-275.

[31]Eggermont JJ, Roberts LE, 2004. The neuroscience of tinnitus. Trends Neurosci, 27(11):676-682.

[32]Engineer ND, Moller AR, Kilgard MP, 2013. Directing neural plasticity to understand and treat tinnitus. Hear Res, 295: 58-66.

[33]Faber M, Vanneste S, Fregni F, et al., 2012. Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. Brain Stimul, 5(4):492-498.

[34]Fertonani A, Pirulli C, Miniussi C, 2011. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci, 31(43):15416-15423.

[35]Folmer RL, Griest SE, Meikle MB, et al., 1999. Tinnitus severity, loudness, and depression. Otolaryngol Head Neck Surg, 121(1):48-51.

[36]Frank E, Schecklmann M, Landgrebe M, et al., 2012. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. J Neurol, 259(2):327-333.

[37]Fregni F, Marcondes R, Boggio PS, et al., 2006. Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol, 13(9):996-1001.

[38]Garin P, Gilain C, van Damme JP, et al., 2011. Short- and long-lasting tinnitus relief induced by transcranial direct current stimulation. J Neurol, 258(11):1940-1948.

[39]Gosepath K, Nafe B, Ziegler E, et al., 2001. Neurofeedback in therapy of tinnitus. HNO, 49(1):29-35 (in German).

[40]Hartmann T, Lorenz I, Müller N, et al., 2014. The effects of neurofeedback on oscillatory processes related to tinnitus. Brain Topogr, 27(1):149-157.

[41]Hoare DJ, Stacey PC, Hall DA, 2010. The efficacy of auditory perceptual training for tinnitus: a systematic review. Ann Behav Med, 40(3):313-324.

[42]Hoare DJ, van Labeke N, McCormack A, et al., 2014. Gameplay as a source of intrinsic motivation in a randomized controlled trial of auditory training for tinnitus. PLoS ONE, 9(9):e107430.

[43]Hoare DJ, Adjamian P, Sereda M, 2016. Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review. Neural Plast, 2016:5130503.

[44]Hoffman HJ, Reed GW, 2004. Epidemiology of tinnitus. In: Snow JB (Ed.), Tinnitus: Theory and Management. BC Decker Inc., Hamilton, London, p.16-41.

[45]Hoffman RE, Cavus I, 2002. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry, 159(7):1093-1102.

[46]Hyvärinen P, Yrttiaho S, Lehtimäki J, et al., 2015. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear, 36(3):e76-e85.

[47]Jackson P, 1985. A comparison of the effects of eighth nerve section with lidocaine on tinnitus. J Laryngol Otol, 99(7):663-666.

[48]Jastreboff PJ, 1990. Phantom auditory perception (tinnitus):mechanisms of generation and perception. Neurosci Res, 8(4):221-254.

[49]Joliot M, Ribary U, Llinás R, 1994. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA, 91(24):11748-11751.

[50]Joos K, de Ridder D, van de Heyning P, et al., 2014. Polarity specific suppression effects of transcranial direct current stimulation for tinnitus. Neural Plast, 2014:930860.

[51]Joos K, de Ridder D, Vanneste S, 2015. The differential effect of low-versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res, 233(5):1433-1440.

[52]Kaltenbach JA, Afman CE, 2000. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res, 140(1-2):165-172.

[53]Khedr EM, Rothwell JC, Ahmed MA, et al., 2008. Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies. J Neurol Neurosurg Psychiat, 79(2):212-215.

[54]Khedr EM, Rothwell JC, El-Atar A, 2009. One-year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. Eur J Neurol, 16(3):404-408.

[55]Kilgard MP, Merzenich MM, 1998a. Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357):1714-1718.

[56]Kilgard MP, Merzenich MM, 1998b. Plasticity of temporal information processing in the primary auditory cortex. Nat Neurosci, 1(8):727-731.

[57]Kleinjung T, Eichhammer P, Langguth B, et al., 2005. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg, 132(4):566-569.

[58]Kleinjung T, Eichhammer P, Landgrebe M, et al., 2008. Combined temporal and prefrontal transcranial magnetic stimulation for tinnitus treatment: a pilot study. Otolaryngol Head Neck Surg, 138(4):497-501.

[59]Koller WC, Lyons KE, Wilkinson SB, et al., 1999. Efficacy of unilateral deep brain stimulation of the VIM nucleus of the thalamus for essential head tremor. Movement Disord, 14(5):847-850.

[60]Krack P, Batir A, van Blercom N, et al., 2003. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med, 349(20):1925-1934.

[61]Kreuzer PM, Landgrebe M, Schecklmann M, et al., 2011. Can temporal repetitive transcranial magnetic stimulation be enhanced by targeting affective components of tinnitus with frontal rTMS? A randomized controlled pilot trial. Front Syst Neurosci, 5:88.

[62]Kreuzer PM, Landgrebe M, Husser O, et al., 2012. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry, 3:70.

[63]Kreuzer PM, Landgrebe M, Resch M, et al., 2014. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul, 7(5):740-747.

[64]Langguth B, Schecklmann M, Lehner A, et al., 2012. Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus. Front Syst Neurosci, 6:15.

[65]Langguth B, Kreuzer PM, Kleinjung T, et al., 2013. Tinnitus: causes and clinical management. Lancet Neurol, 12(9):920-930.

[66]Langguth B, Landgrebe M, Frank E, et al., 2014. Efficacy of different protocols of transcranial magnetic stimulation for the treatment of tinnitus: pooled analysis of two randomized controlled studies. World J Biol Psychiatry, 15(4):276-285.

[67]Lansbergen MM, van Dongen-Boomsma M, Buitelaar JK, et al., 2011. ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study. J Neural Transm, 118(2):275-284.

[68]Leaver AM, Renier L, Chevillet MA, et al., 2011. Dysregulation of limbic and auditory networks in tinnitus. Neuron, 69(1):33-43.

[69]Leaver AM, Seydell-Greenwald A, Turesky TK, et al., 2012. Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci, 6:21.

[70]Leaver AM, Seydell-Greenwald A, Rauschecker JP, 2016a. Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res, 334:49-57.

[71]Leaver AM, Turesky TK, Seydell-Greenwald A, et al., 2016b. Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp, 37(8):2717-2735.

[72]Lee HY, Yoo SD, Ryu EW, et al., 2013. Short term effects of repetitive transcranial magnetic stimulation in patients with catastrophic intractable tinnitus: preliminary report. Clin Exp Otorhinolaryngol, 6(2):63-67.

[73]Lefaucheur JP, Andre-Obadia N, Antal A, et al., 2014. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol, 125(11):2150-2206.

[74]Lehner A, Schecklmann M, Kreuzer PM, et al., 2013a. Comparing single-site with multisite rTMS for the treatment of chronic tinnitus—clinical effects and neuroscientific insights: study protocol for a randomized controlled trial. Trials, 14(1):269.

[75]Lehner A, Schecklmann M, Poeppl TB, et al., 2013b. Multisite rTMS for the treatment of chronic tinnitus: stimulation of the cortical tinnitus network—a pilot study. Brain Topogr, 26(3):501-510.

[76]Lehner A, Schecklmann M, Poeppl TB, et al., 2015. Efficacy and safety of repeated courses of rTMS treatment in patients with chronic subjective tinnitus. BioMed Res Int, 2015:975808.

[77]Lehtimӓki J, Hyvӓrinen P, Ylikoski M, et al., 2013. Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngol, 133(4):378-382.

[78]Li TT, Wang ZJ, Yang SB, et al., 2015. Transcutaneous electrical stimulation at auricular acupoints innervated by auricular branch of vagus nerve pairing tone for tinnitus: study protocol for a randomized controlled clinical trial. Trials, 16(1):101.

[79]Llinás RR, Ribary U, Jeanmonod D, et al., 1999. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA, 96(26):15222-15227.

[80]Llinás R, Urbano FJ, Leznik E, et al., 2005. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci, 28(6):325-333.

[81]Lorenz I, Muller N, Schlee W, et al., 2009. Loss of alpha power is related to increased gamma synchronization— a marker of reduced inhibition in tinnitus? Neurosci Lett, 453(3):225-228.

[82]Lubar JF, Bahler WW, 1976. Behavioral management of epileptic seizures following EEG biofeedback training of the sensorimotor rhythm. Biofeedback Self Regul, 1(1):77-104.

[83]Lubar JF, Shouse MN, 1976. EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR):a preliminary report. Biofeedback Self Regul, 1(3):293-306.

[84]Marchand S, Kupers RC, Bushnell MC, et al., 2003. Analgesic and placebo effects of thalamic stimulation. Pain, 105(3):481-488.

[85]Marcondes RA, Sanchez TG, Kii MA, et al., 2010. Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinical and neuroimaging outcome study. Eur J Neurol, 17(1):38-44.

[86]Mennemeier M, Chelette KC, Allen S, et al., 2011. Variable changes in PET activity before and after rTMS treatment for tinnitus. Laryngoscope, 121(4):815-822.

[87]Meyer M, Neff P, Liem F, et al., 2016. Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hear Res, 342:1-12.

[88]Miranda PC, Lomarev M, Hallett M, 2006. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol, 117(7):1623-1629.

[89]Mühlau M, Rauschecker JP, Oestreicher E, et al., 2006. Structural brain changes in tinnitus. Cerebral Cortex, 16(9):1283-1288.

[90]Mühlnickel W, Elbert T, Taub E, et al., 1998. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA, 95(17):10340-10343.

[91]Newman CW, Jacobson GP, Spitzer JB, 1996. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head Neck Surg, 122(2):143-148.

[92]Nondahl DM, Cruickshanks KJ, Dalton DS, et al., 2007. The impact of tinnitus on quality of life in older adults. J Am Acad Audiol, 18(3):257-266.

[93]Owen SL, Green AL, Stein JF, et al., 2006. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain, 120(1-2):202-206.

[94]Pandya DN, Rosene DL, Doolittle AM, 1994. Corticothalamic connections of auditory-related areas of the temporal lobe in the rhesus monkey. J Comp Neurol, 345(3):447-471.

[95]Paulus W, 2011. Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychol Rehab, 21(5):602-617.

[96]Prestes R, Daniela G, 2009. Impact of tinnitus on quality of life, loudness and pitch match, and high-frequency audiometry. Int Tinnitus J, 15(2):134-138.

[97]Punte AK, Vermeire K, Hofkens A, et al., 2011. Cochlear implantation as a durable tinnitus treatment in single-sided deafness. Cochlear Implants Int, 12(Suppl 1):S26-S29.

[98]Ramos Á, Polo R, Masgoret E, et al., 2012. Cochlear implant in patients with sudden unilateral sensorineural hearing loss and associated tinnitus. Acta Otorrinolaringol Esp, 63(1):15-20.

[99]Rauschecker JP, Leaver AM, Mühlau M, 2010. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron, 66(6):819-826.

[100]Rauschecker JP, May ES, Maudoux A, et al., 2015. Frontostriatal gating of tinnitus and chronic pain. Trends Cogn Sci, 19(10):567-578.

[101]Rehncrona S, Johnels B, Widner H, et al., 2003. Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord, 18(2):163-170.

[102]Rossi S, de Capua A, Ulivelli M, et al., 2007. Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study. J Neurol Neurosurg Psychiatry, 78(8):857-863.

[103]Saiote C, Polanía R, Rosenberger K, et al., 2013. High-frequency TRNS reduces BOLD activity during visuomotor learning. PLoS ONE, 8(3):e59669.

[104]Salvi RJ, Wang J, Ding D, 2000. Auditory plasticity and hyperactivity following cochlear damage. Hear Res, 147(1-2):261-274.

[105]Schenk S, Lamm K, Gündel H, et al., 2005. Neurofeedback-based EEG alpha and EEG beta training. Effectiveness in patients with chronically decompensated tinnitus. HNO, 53(1):29-37 (in German).

[106]Schlee W, Weisz N, Bertrand O, et al., 2008. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE, 3(11):e3720.

[107]Schlee W, Mueller N, Hartmann T, et al., 2009. Mapping cortical hubs in tinnitus. BMC Biol, 7:80.

[108]Sedley W, Gander PE, Kumar S, et al., 2015. Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol, 25(9):1208-1214.

[109]Seidman MD, de Ridder D, Elisevich K, et al., 2008. Direct electrical stimulation of Heschl’s gyrus for tinnitus treatment. Laryngoscope, 118(3):491-500.

[110]Seydell-Greenwald A, Leaver AM, Turesky TK, et al., 2012. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res, 1485:22-39.

[111]Seydell-Greenwald A, Raven EP, Leaver AM, et al., 2014. Diffusion imaging of auditory and auditory-limbic connectivity in tinnitus: preliminary evidence and methodological challenges. Neural Plast, 2014:145943.

[112]Shekhawat GS, Stinear CM, Searchfield GD, 2013. Transcranial direct current stimulation intensity and duration effects on tinnitus suppression. Neurorehab Neural Rep, 27(2):164-172.

[113]Shekhawat GS, Sundram F, Bikson M, et al., 2016. Intensity, duration, and location of high-definition transcranial direct current stimulation for tinnitus relief. Neurorehabil Neural Repair, 30(4):349-359.

[114]Shi Y, Burchiel KJ, Anderson VC, et al., 2009. Deep brain stimulation effects in patients with tinnitus. Otolaryngol Head Neck Surg, 141(2):285-287.

[115]Siebner HR, Filipovic SR, Rowe JB, et al., 2003. Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain, 126(12):2710-2725.

[116]Smit JV, Janssen ML, Engelhard M, et al., 2016. The impact of deep brain stimulation on tinnitus. Surg Neurol Int, 7(Suppl 35):S848-S854.

[117]Soleimani R, Jalali MM, Hasandokht T, 2016. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur Arch Oto-Rhino-Laryngol, 273(7):1663-1675.

[118]Song JJ, Vanneste S, van de Heyning P, et al., 2012. Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis. Sci World J, 2012: 427941.

[119]Tanibuchi I, Goldman-Rakic PS, 2003. Dissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus. J Neurophysiol, 89(2):1067-1077.

[120]Terney D, Chaieb L, Moliadze V, et al., 2008. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci, 28(52):14147-14155.

[121]Theodoroff SM, Folmer RL, 2013. Repetitive transcranial magnetic stimulation as a treatment for chronic tinnitus: a critical review. Otol Neurotol, 34(2):199-208.

[122]To WT, Ost J, Hart Jr J, et al., 2017. The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus. J Neural Transm, 124(1):79-88.

[123]van de Heyning P, Vermeire K, Diebl M, et al., 2008. Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann Otol Rhinol Laryngol, 117(9):645-652.

[124]van Doren J, Langguth B, Schecklmann M, 2014. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul, 7(6):807-812.

[125]Vanneste S, de Ridder D, 2011. Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity. Eur J Neurosci, 34(4):605-614.

[126]Vanneste S, de Ridder D, 2012. Noninvasive and invasive neuromodulation for the treatment of tinnitus: an overview. Neuromodulation, 15(4):350-360.

[127]Vanneste S, de Ridder D, 2013. Differences between a single session and repeated sessions of 1 Hz TMS by double-cone coil prefrontal stimulation for the improvement of tinnitus. Brain Stimul, 6(2):155-159.

[128]Vanneste S, Plazier M, Ost J, et al., 2010a. Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res, 202(4):779-785.

[129]Vanneste S, Plazier M, van der Loo E, et al., 2010b. The neural correlates of tinnitus-related distress. NeuroImage, 52(2):470-480.

[130]Vanneste S, Focquaert F, van de Heyning P, et al., 2011a. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res, 210(2):217-227.

[131]Vanneste S, van de Heyning P, de Ridder D, 2011b. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci, 34(5):718-731.

[132]Vanneste S, Walsh V, van de Heyning P, et al., 2013a. Comparing immediate transient tinnitus suppression using tACS and tDCS: a placebo-controlled study. Exp Brain Res, 226(1):25-31.

[133]Vanneste S, Fregni F, de Ridder D, 2013b. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for Tinnitus. Front Psychiatry, 4:158.

[134]Vidailhet M, Yelnik J, Lagrange C, et al., 2009. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol, 8(8):709-717.

[135]Weidt S, Delsignore A, Meyer M, et al., 2016. Which tinnitus-related characteristics affect current health-related quality of life and depression? A cross-sectional cohort study. Psychiatry Res, 237:114-121.

[136]Weisz N, Moratti S, Meinzer M, et al., 2005. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med, 2(6):e153.

[137]Weisz N, Dohrmann K, Elbert T, 2007. The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res, 166:61-70.

[138]Zaehle T, Lenz D, Ohl FW, et al., 2010a. Resonance phenomena in the human auditory cortex: individual resonance frequencies of the cerebral cortex determine electrophysiological responses. Exp Brain Res, 203(3):629-635.

[139]Zaehle T, Rach S, Herrmann CS, 2010b. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE, 5(11):e13766.

[140]Zaghi S, de Freitas Rezende L, de Oliveira LM, et al., 2010a. Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS). Neurosci Lett, 479(3):211-214.

[141]Zaghi S, Acar M, Hultgren B, et al., 2010b. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist, 16(3):285-307.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE