Full Text:   <304>

Summary:  <91>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-10-18

Cited: 0

Clicked: 473

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Panke WANG

https://orcid.org/0000-0002-8733-9773

An’an LI

https://orcid.org/0000-0003-0037-5980

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.10 P.824-840

http://doi.org/10.1631/jzus.B2400051


Odor representation and coding by the mitral/tufted cells in the olfactory bulb


Author(s):  Panke WANG, Shan LI, An’an LI

Affiliation(s):  School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China; more

Corresponding email(s):   anan.li@xzhmu.edu.cn

Key Words:  Olfactory bulb, Mitral/tufted cells, Odor identity, Neural representation, Information encoding


Panke WANG, Shan LI, An’an LI. Odor representation and coding by the mitral/tufted cells in the olfactory bulb[J]. Journal of Zhejiang University Science B, 2024, 25(10): 824-840.

@article{title="Odor representation and coding by the mitral/tufted cells in the olfactory bulb",
author="Panke WANG, Shan LI, An’an LI",
journal="Journal of Zhejiang University Science B",
volume="25",
number="10",
pages="824-840",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400051"
}

%0 Journal Article
%T Odor representation and coding by the mitral/tufted cells in the olfactory bulb
%A Panke WANG
%A Shan LI
%A An’an LI
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 10
%P 824-840
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400051

TY - JOUR
T1 - Odor representation and coding by the mitral/tufted cells in the olfactory bulb
A1 - Panke WANG
A1 - Shan LI
A1 - An’an LI
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 10
SP - 824
EP - 840
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400051


Abstract: 
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies—spatial coding and temporal coding—work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.

嗅球僧帽/簇状细胞对气味的表征和编码

王攀科1,李珊2,李安安2
1广东医科大学生物医学工程学院, 中国东莞市, 523808
2徐州医科大学江苏省脑病与生物信息学重点实验室, 生物化学与分子生物学研究中心, 中国徐州市, 221004
摘要:嗅球是嗅觉系统中的第一个中继站,起着关键的枢纽作用,能在不断变化的环境中精确地表征气味信息。作为嗅球中唯一的输出神经元,僧帽细胞/簇状细胞编码诸如气味类型和浓度等信息。近年来,针对嗅球中气味表征和编码的潜在神经策略和机制已开展了广泛的研究。本文对该领域的主要进展进行了综述,首先回顾了涉及气味表征的神经元和相关环路,包括嗅球中的不同细胞类型以及嗅球内部和外部的神经回路;随后讨论了两种不同的编码策略(空间编码和时间编码)在啮齿动物嗅球中的工作原理;最后,对该研究领域的潜在未来方向展开讨论。综上,本文就目前僧帽细胞/簇状细胞在嗅球中如何表征和编码气味信息进行了全面总结。

关键词:嗅球;僧帽/簇状细胞;气味类型;神经表征;信息编码

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbrahamNM, SporsH, CarletonA, et al., 2004. Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron, 44(5):865-876.

[2]AbrahamNM, EggerV, ShimshekDR, et al., 2010. Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice. Neuron, 65(3):399-411.

[3]AbrahamNM, VincisR, LagierS, et al., 2014. Long term functional plasticity of sensory inputs mediated by olfactory learning. eLife, 3:e02109.

[4]AckelsT, ErskineA, DasguptaD, et al., 2021. Fast odour dynamics are encoded in the olfactory system and guide behaviour. Nature, 593(7860):558-563.

[5]AdrianED, 1950. The electrical activity of the mammalian olfactory bulb. Electroencephalogr Clin Neurophysiol, 2(1-4):377-388.

[6]AlonsoM, LepousezG, WagnerS, et al., 2012. Activation of adult-born neurons facilitates learning and memory. Nat Neurosci, 15(6):897-904.

[7]AqrabawiAJ, KimJC, 2020. Olfactory memory representations are stored in the anterior olfactory nucleus. Nat Commun, 11:1246.

[8]ArziA, RozenkrantzL, GorodiskyL, et al., 2020. Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature, 581(7809):428-433.

[9]AsticL, SaucierD, 1986. Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Brain Res Bull, 16(4):445-454.

[10]BagurS, LacroixMM, de LavilléonG, et al., 2018. Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth. PLoS Biol, 16(11):e2005458.

[11]BathellierB, BuhlDL, AccollaR, et al., 2008. Dynamic ensemble odor coding in the mammalian olfactory bulb: sensory information at different timescales. Neuron, 57(4):586-598.

[12]BhattacharjeeAS, KonakamchiS, TuraevD, et al., 2019. Similarity and strength of glomerular odor representations define a neural metric of sniff-invariant discrimination time. Cell Rep, 28(11):2966-2978.e5.

[13]BhattacharjeeAS, JoshiSV, NaikS, et al., 2020. Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers. eClinicalMedicine, 28:100575.

[14]BhowmikR, PardasaniM, MahajanS, et al., 2023. Persistent olfactory learning deficits during and post-COVID-19 infection. Curr Res Neurobiol, 4:100081.

[15]BillesbølleCB, de MarchCA, van der VeldenWJC, et al., 2023. Structural basis of odorant recognition by a human odorant receptor. Nature, 615(7953):742-749.

[16]BöhmE, BrunertD, RothermelM, 2020. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep, 10:10696.

[17]BoldingKA, FranksKM, 2018. Recurrent cortical circuits implement concentration-invariant odor coding. Science, 361(6407):eaat6904.

[18]BoydAM, SturgillJF, PooC, et al., 2012. Cortical feedback control of olfactory bulb circuits. Neuron, 76(6):1161-1174.

[19]BrunertD, RothermelM, 2021. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res, 383(1):507-524.

[20]BrunertD, TsunoY, RothermelM, et al., 2016. Cell-type-specific modulation of sensory responses in olfactory bulb circuits by serotonergic projections from the raphe nuclei. J Neurosci, 36(25):6820-6835.

[21]BrunertD, Medinaceli QuintelaR, RothermelM, 2023. The anterior olfactory nucleus revisited ‒ An emerging role for neuropathological conditions? Prog Neurobiol, 228:102486.

[22]BuckL, AxelR, 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65(1):175-187.

[23]BurtonSD, 2017. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol, 118(4):2034-2051.

[24]CaseDT, BurtonSD, GedeonJY, et al., 2017. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat Commun, 8:652.

[25]ChaeH, BanerjeeA, DussauzeM, et al., 2022. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron, 110(23):3970-3985.e7.

[26]ChenFJ, LiuW, LiuPL, et al., 2021. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. npj Parkinsons Dis, 7:114.

[27]ChenYS, ChenXY, BaserdemB, et al., 2022. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell, 185(22):4117-4134.e28.

[28]ChoiGB, StettlerDD, KallmanBR, et al., 2011. Driving opposing behaviors with ensembles of piriform neurons. Cell, 146(6):1004-1015.

[29]ChongE, MoroniM, WilsonC, et al., 2020. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science, 368(6497):eaba2357.

[30]ChuMW, LiWL, KomiyamaT, 2016. Balancing the robustness and efficiency of odor representations during learning. Neuron, 92(1):174-186.

[31]CuryKM, UchidaN, 2010. Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron, 68(3):570-585.

[32]DasguptaD, WarnerTPA, ErskineA, et al., 2022. Coupling of mouse olfactory bulb projection neurons to fluctuating odor pulses. J Neurosci, 42(21):4278-4296.

[33]DiazC, FranksKM, BlazingRM, 2023. Neuroscience: seq-ing maps in the olfactory cortex. Curr Biol, 33(7):R266-R269.

[34]DoucetteW, GireDH, WhitesellJ, et al., 2011. Associative cortex features in the first olfactory brain relay station. Neuron, 69(6):1176-1187.

[35]FleischmannA, ShykindBM, SosulskiDL, et al., 2008. Mice with a “monoclonal nose”: perturbations in an olfactory map impair odor discrimination. Neuron, 60(6):1068-1081.

[36]FletcherML, ChenWR, 2010. Neural correlates of olfactory learning: critical role of centrifugal neuromodulation. Learn Mem, 17(11):561-570.

[37]FriedrichRW, WiechertMT, 2014. Neuronal circuits and computations: pattern decorrelation in the olfactory bulb. FEBS Lett, 588(15):2504-2513.

[38]FukunagaI, BerningM, KolloM, et al., 2012. Two distinct channels of olfactory bulb output. Neuron, 75(2):320-329.

[39]GadziolaMA, TylickiKA, ChristianDL, et al., 2015. The olfactory tubercle encodes odor valence in behaving mice. J Neurosci, 35(11):4515-4527.

[40]GaoKQ, LiSM, ZhuangLJ, et al., 2018. In vivo bioelectronic nose using transgenic mice for specific odor detection. Biosens Bioelectron, 102:150-156.

[41]GhoshS, LarsonSD, HefziH, et al., 2011. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature, 472(7342):217-220.

[42]GreerPL, BearDM, LassanceJM, et al., 2016. A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell, 165(7):1734-1748.

[43]GschwendO, AbrahamNM, LagierS, et al., 2015. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat Neurosci, 18(10):1474-1482.

[44]GuoLL, ChengJ, LianS, et al., 2023. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature, 618(7963):193-200.

[45]HanchateNK, KondohK, LuZH, et al., 2015. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science, 350(6265):1251-1255.

[46]HarleyCW, YuanQ, 2021. Locus coeruleus optogenetic modulation: lessons learned from temporal patterns. Brain Sci, 11(12):1624.

[47]JiangHD, SchueleS, RosenowJ, et al., 2017. Theta oscillations rapidly convey odor-specific content in human piriform cortex. Neuron, 94(1):207-219.e4.

[48]JohnsonBA, LeonM, 2007. Chemotopic odorant coding in a mammalian olfactory system. J Comp Neurol, 503(1):1-34.

[49]JohnsonBA, WooCC, LeonM, 1998. Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb. J Comp Neurol, 393(4):457-471.

[50]JordanR, FukunagaI, KolloM, et al., 2018. Active sampling state dynamically enhances olfactory bulb odor representation. Neuron, 98(6):1214-1228.e5.

[51]JunekS, KludtE, WolfF, et al., 2010. Olfactory coding with patterns of response latencies. Neuron, 67(5):872-884.

[52]KapoorV, ProvostAC, AgarwalP, et al., 2016. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nat Neurosci, 19(2):271-282.

[53]KatoHK, ChuMW, IsaacsonJS, et al., 2012. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron, 76(5):962-975.

[54]KatoHK, GilletSN, PetersAJ, et al., 2013. Parvalbumin-expressing interneurons linearly control olfactory bulb output. Neuron, 80(5):1218-1231.

[55]KayLM, 2022. COVID-19 and olfactory dysfunction: a looming wave of dementia? J Neurophysiol, 128(2):436-444.

[56]KayLM, BeshelJ, BreaJ, et al., 2009. Olfactory oscillations: the what, how and what for. Trends Neurosci, 32(4):207-214.

[57]KeppleDR, GiaffarH, RinbergD, et al., 2019. Deconstructing odorant identity via primacy in dual networks. Neural Comput, 31(4):710-737.

[58]KhanAG, SarangiM, BhallaUS, 2012. Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling. Nat Commun, 3:703.

[59]KimH, KimH, NguyenLT, et al., 2022. Amplification of olfactory signals by Anoctamin 9 is important for mammalian olfaction. Prog Neurobiol, 219:102369.

[60]KiyokageE, PanYZ, ShaoZY, et al., 2010. Molecular identity of periglomerular and short axon cells. J Neurosci, 30(3):1185-1196.

[61]KuruppathP, XueL, PouilleF, et al., 2023. Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the Fmr1 KO mouse model of fragile X syndrome. J Neurosci, 43(48):8243-8258.

[62]LaurentG, 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci, 3(11):884-895.

[63]LeongLM, StoraceDA, 2024. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator arclight. Neurophotonics, 11(3):033402.

[64]LiAN, GongL, XuFQ, 2011. Brain-state-independent neural representation of peripheral stimulation in rat olfactory bulb. Proc Natl Acad Sci USA, 108(12):5087-5092.

[65]LiAN, GireDH, BozzaT, et al., 2014. Precise detection of direct glomerular input duration by the olfactory bulb. J Neurosci, 34(48):16058-16064.

[66]LiAN, GireDH, RestrepoD, 2015. ϒ spike-field coherence in a population of olfactory bulb neurons differentiates between odors irrespective of associated outcome. J Neurosci, 35(14):5808-5822.

[67]LiAN, RaoXP, ZhouY, et al., 2020. Complex neural representation of odour information in the olfactory bulb. Acta Physiol, 228(1):e13333.

[68]LiY, SwerdloffM, SheTY, et al., 2023. Robust odor identification in novel olfactory environments in mice. Nat Commun, 14:673.

[69]LinsterC, ClelandTA, 2016. Neuromodulation of olfactory transformations. Curr Opin Neurobiol, 40:170-177.

[70]LiuMX, JiangN, ShiYQ, et al., 2023. Spatiotemporal coding of natural odors in the olfactory bulb. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(11):1057-1061.

[71]LiuPL, CaoTT, XuJS, et al., 2020. Plasticity of sniffing pattern and neural activity in the olfactory bulb of behaving mice during odor sampling, anticipation, and reward. Neurosci Bull, 36(6):598-610.

[72]LiuPL, GaoC, WuJ, et al., 2023. Negative valence encoding in the lateral entorhinal cortex during aversive olfactory learning. Cell Rep, 42(10):113204.

[73]López-MascaraqueL, de CarlosJA, ValverdeF, 1986. Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): description of cell types in the granular layer. J Comp Neurol, 253(2):135-152.

[74]Lyons-WarrenAM, TantryEK, MossEH, et al., 2023. Co-transmitting interneurons in the mouse olfactory bulb regulate olfactory detection and discrimination. Cell Rep, 42(12):113471.

[75]LysetskiyM, LozowskiA, ZuradaJM, 2002. Temporal-to-spatial dynamic mapping, flexible recognition, and temporal correlations in an olfactory cortex model. Biol Cybern, 87(1):58-67.

[76]MaM, LuoMM, 2012. Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. J Neurosci, 32(30):10105-10116.

[77]ManellaLC, PetersenN, LinsterC, 2017. Stimulation of the locus ceruleus modulates signal-to-noise ratio in the olfactory bulb. J Neurosci, 37(48):11605-11615.

[78]MarkopoulosF, RokniD, GireDH, et al., 2012. Functional properties of cortical feedback projections to the olfactory bulb. Neuron, 76(6):1175-1188.

[79]MartirosN, KapoorV, KimSE, et al., 2022. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum’s olfactory tubercle. eLife, 11:e75463.

[80]MazoC, NissantA, SahaS, et al., 2022. Long-range GABAergic projections contribute to cortical feedback control of sensory processing. Nat Commun, 13:6879.

[81]Meissner-BernardC, DembitskayaY, VenanceL, et al., 2019. Encoding of odor fear memories in the mouse olfactory cortex. Current Biology, 29(3):367-380.e4.

[82]MenniC, ValdesAM, FreidinMB, et al., 2020. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med, 26(7):1037-1040.

[83]MiyamichiK, AmatF, MoussaviF, et al., 2011. Cortical representations of olfactory input by trans-synaptic tracing. Nature, 472(7342):191-196.

[84]MiyamichiK, Shlomai-FuchsY, ShuM, et al., 2013. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron, 80(5):1232-1245.

[85]MoeinST, HashemianSM, TabarsiP, et al., 2020. Prevalence and reversibility of smell dysfunction measured psychophysically in a cohort of COVID-19 patients. Int Forum Allergy Rhinol, 10(10):1127-1135.

[86]MooreJD, KleinfeldD, WangF, 2014. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci, 37(7):370-380.

[87]MoriK, SakanoH, 2011. How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci, 34:467-499.

[88]MoriK, SakanoH, 2021. Olfactory circuitry and behavioral decisions. Annu Rev Physiol, 83:231-256.

[89]MoriK, NowyckyMC, ShepherdGM, 1981. Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. J Physiol, 314(1):281-294.

[90]MoriK, KishiK, OjimaH, 1983. Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J Comp Neurol, 219(3):339-355.

[91]MoriK, NagaoH, YoshiharaY, 1999. The olfactory bulb: coding and processing of odor molecule information. Science, 286(5440):711-715.

[92]MoriK, TakahashiYK, IgarashiKM, et al., 2006. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev, 86(2):409-433.

[93]NajacM, DiezAS, KumarA, et al., 2015. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. J Neurosci, 35(10):4319-4331.

[94]NoceraS, SimonA, FiquetO, et al., 2019. Somatostatin serves a modulatory role in the mouse olfactory bulb: neuroanatomical and behavioral evidence. Front Behav Neurosci, 13:61.

[95]OsinskiBL, KimA, XiaoWX, et al., 2018. Pharmacological manipulation of the olfactory bulb modulates beta oscillations: testing model predictions. J Neurophysiol, 120(3):1090-1106.

[96]PardasaniM, RamakrishnanAM, MahajanS, et al., 2023. Perceptual learning deficits mediated by somatostatin releasing inhibitory interneurons of olfactory bulb in an early life stress mouse model. Mol Psychiatry, 28(11):4693-4706.

[97]PattersonMA, LagierS, CarletonA, 2013. Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage. Proc Natl Acad Sci USA, 110(35):E3340-E3349.

[98]PeaceST, JohnsonBC, WerthJC, et al., 2024. Coherent olfactory bulb gamma oscillations arise from coupling independent columnar oscillators. J Neurophysiol, 131(3):492-508.

[99]PoplawskyAJ, CoverC, ReddyS, et al., 2023. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. NeuroImage, 274:120121.

[100]PresslerRT, StrowbridgeBW, 2006. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron, 49(6):889-904.

[101]PresslerRT, StrowbridgeBW, 2022. Extraglomerular excitation of rat olfactory bulb mitral cells by depolarizing GABAergic synaptic input. J Neurosci, 42(36):6878-6893.

[102]ResslerKJ, SullivanSL, BuckLB, 1993. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell, 73(3):597-609.

[103]RestrepoD, DoucetteW, WhitesellJD, et al., 2009. From the top down: flexible reading of a fragmented odor map. Trends Neurosci, 32(10):525-531.

[104]RinbergD, KoulakovA, GelperinA, 2006. Sparse odor coding in awake behaving mice. J Neurosci, 26(34):8857-8865.

[105]RolandB, DeneuxT, FranksKM, et al., 2017. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife, 6:e26337.

[106]RothermelM, CareyRM, PucheA, et al., 2014. Cholinergic inputs from basal forebrain add an excitatory bias to odor coding in the olfactory bulb. J Neurosci, 34(13):4654-4664.

[107]RubinBD, KatzLC, 1999. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron, 23(3):499-511.

[108]SchaferJR, KidaI, RothmanDL, et al., 2005. Adaptation in the rodent olfactory bulb measured by fMRI. Magn Reson Med, 54(2):443-448.

[109]SchoenfeldTA, ClancyAN, ForbesWB, et al., 1994. The spatial organization of the peripheral olfactory system of the hamster. Part I: receptor neuron projections to the main olfactory bulb. Brain Res Bull, 34(3):183-210.

[110]SchoonoverCE, OhashiSN, AxelR, et al., 2021. Representational drift in primary olfactory cortex. Nature, 594(7864):541-546.

[111]SchoppaNE, 2006. A novel local circuit in the olfactory bulb involving an old short-axon cell. Neuron, 49(6):783-784.

[112]SharpFR, KauerJS, ShepherdGM, 1975. Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res, 98(3):596-600.

[113]ShayyaHJ, KahiapoJK, DuffiéR, et al., 2022. ER stress transforms random olfactory receptor choice into axon targeting precision. Cell, 185(21):3896-3912.e22.

[114]SheriffA, PandolfiG, NguyenVS, et al., 2021. Long-range respiratory and theta oscillation networks depend on spatial sensory context. J Neurosci, 41(48):9957-9970.

[115]ShipleyMT, EnnisM, 1996. Functional organization of olfactory system. J Neurobiol, 30(1):123-176.

[116]SmearM, ShustermanR, O'ConnorR, et al., 2011. Perception of sniff phase in mouse olfaction. Nature, 479(7373):397-400.

[117]SmearM, ResulajA, ZhangJJ, et al., 2013. Multiple perceptible signals from a single olfactory glomerulus. Nat Neurosci, 16(11):1687-1691.

[118]SnitzK, Andelman-GurM, PinchoverL, et al., 2021. Proof of concept for real-time detection of SARS CoV-2 infection with an electronic nose. PLoS ONE, 16(6):e0252121.

[119]SosulskiDL, BloomML, CutforthT, et al., 2011. Distinct representations of olfactory information in different cortical centres. Nature, 472(7342):213-216.

[120]SporsH, WachowiakM, CohenLB, et al., 2006. Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J Neurosci, 26(4):1247-1259.

[121]StettlerDD, AxelR, 2009. Representations of odor in the piriform cortex. Neuron, 63(6):854-864.

[122]StopferM, JayaramanV, LaurentG, 2003. Intensity versus identity coding in an olfactory system. Neuron, 39(6):991-1004.

[123]SzyszkaP, StierleJS, BiergansS, et al., 2012. The speed of smell: odor-object segregation within milliseconds. PLoS ONE, 7(4):e36096.

[124]SzyszkaP, EmonetT, EdwardsTL, 2023. Extracting spatial information from temporal odor patterns: insights from insects. Curr Opin Insect Sci, 59:101082.

[125]TsujiT, TsujiC, LozicM, et al., 2019. Coding of odors in the anterior olfactory nucleus. Physiol Rep, 7(22):e14284.

[126]UchidaN, MainenZF, 2003. Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci, 6(11):1224-1229.

[127]UchidaN, PooC, HaddadR, 2014. Coding and transformations in the olfactory system. Annu Rev Neurosci, 37:363-385.

[128]VerhagenJV, BakerKL, VasanG, et al., 2023. Odor encoding by signals in the olfactory bulb. J Neurophysiol, 129(2):431-444.

[129]WachowiakM, 2011. All in a sniff: olfaction as a model for active sensing. Neuron, 71(6):962-973.

[130]WachowiakM, EconomoMN, Díaz-QuesadaM, et al., 2013. Optical dissection of odor information processing in vivo using gcamps expressed in specified cell types of the olfactory bulb. J Neurosci, 33(12):5285-5300.

[131]WangDJ, LiuPL, MaoXF, et al., 2019. Task-demand-dependent neural representation of odor information in the olfactory bulb and posterior piriform cortex. J Neurosci, 39(50):10002-10018.

[132]WangDJ, WangXJ, LiuPL, et al., 2020. Serotonergic afferents from the dorsal raphe decrease the excitability of pyramidal neurons in the anterior piriform cortex. Proc Natl Acad Sci USA, 117(6):3239-3247.

[133]WangDJ, WuJ, LiuPL, et al., 2022. Vip interneurons regulate olfactory bulb output and contribute to odor detection and discrimination. Cell Rep, 38(7):110383.

[134]WangPY, SunY, AxelR, et al., 2021. Evolving the olfactory system with machine learning. Neuron, 109(23):3879-3892.e5.

[135]WessonDW, 2013. Sniffing behavior communicates social hierarchy. Curr Biol, 23(7):575-580.

[136]WessonDW, 2020. The tubular striatum. J Neurosci, 40(39):7379-7386.

[137]WiechertMT, JudkewitzB, RieckeH, et al., 2010. Mechanisms of pattern decorrelation by recurrent neuronal circuits. Nat Neurosci, 13(8):1003-1010.

[138]WilsonCD, SerranoGO, KoulakovAA, et al., 2017. A primacy code for odor identity. Nat Commun, 8:1477.

[139]WuJ, LiuPL, GengC, et al., 2023. Principal neurons in the olfactory cortex mediate bidirectional modulation of seizures. J Physiol, 601(16):3557-3584.

[140]WuTT, LiS, DuDL, et al., 2023. Olfactory-auditory sensory integration in the lateral entorhinal cortex. Prog Neurobiol, 221:102399.

[141]WuYJ, LiBZ, WangLY, et al., 2023. An unsupervised real-time spike sorting system based on optimized osort. J Neural Eng, 20(6):066015.

[142]XiongA, WessonDW, 2016. Illustrated review of the ventral striatum’s olfactory tubercle. Chem Senses, 41(7):549-555.

[143]XuFQ, GreerCA, ShepherdGM, 2000. Odor maps in the olfactory bulb. J Comp Neurol, 422(4):489-495.

[144]XuFQ, LiuN, KidaI, et al., 2003. Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb. Proc Natl Acad Sci USA, 100(19):11029-11034.

[145]YangQH, ZhouGY, NotoT, et al., 2022. Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol, 20(1):e3001509.

[146]ZhouP, LiuPL, ZhangY, et al., 2022. The response dynamics and function of cholinergic and GABAergic neurons in the basal forebrain during olfactory learning. Front Cell Neurosci, 16:911439.

[147]ZhuKW, BurtonSD, NagaiMH, et al., 2022. Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nat Commun, 13:5137.

[148]ZhuangLJ, GuoTT, CaoDX, et al., 2015. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens Bioelectron, 67:694-699.

[149]ZhuangLJ, WeiXW, JiangN, et al., 2021. A biohybrid nose for evaluation of odor masking in the peripheral olfactory system. Biosens Bioelectron, 171:112737.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE