Full Text:   <657>

Summary:  <242>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-11-14

Received: 2023-04-13

Revision Accepted: 2023-05-30

Crosschecked: 2023-11-15

Cited: 0

Clicked: 728

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ping WANG

https://orcid.org/0000-0001-6474-2722

Liujing ZHUANG

https://orcid.org/0000-0001-9607-1302

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.11 P.1057-1061

http://doi.org/10.1631/jzus.B2300249


Spatiotemporal coding of natural odors in the olfactory bulb


Author(s):  Mengxue LIU, Nan JIANG, Yingqian SHI, Ping WANG, Liujing ZHUANG

Affiliation(s):  Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhuangliujing@zju.edu.cn, cnpwang@zju.edu.cn

Key Words:  Neural interface, Olfactory bulb, Spike activity, Neural oscillation


Mengxue LIU, Nan JIANG, Yingqian SHI, Ping WANG, Liujing ZHUANG. Spatiotemporal coding of natural odors in the olfactory bulb[J]. Journal of Zhejiang University Science B, 2023, 24(11): 1057-1061.

@article{title="Spatiotemporal coding of natural odors in the olfactory bulb",
author="Mengxue LIU, Nan JIANG, Yingqian SHI, Ping WANG, Liujing ZHUANG",
journal="Journal of Zhejiang University Science B",
volume="24",
number="11",
pages="1057-1061",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300249"
}

%0 Journal Article
%T Spatiotemporal coding of natural odors in the olfactory bulb
%A Mengxue LIU
%A Nan JIANG
%A Yingqian SHI
%A Ping WANG
%A Liujing ZHUANG
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 11
%P 1057-1061
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300249

TY - JOUR
T1 - Spatiotemporal coding of natural odors in the olfactory bulb
A1 - Mengxue LIU
A1 - Nan JIANG
A1 - Yingqian SHI
A1 - Ping WANG
A1 - Liujing ZHUANG
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 11
SP - 1057
EP - 1061
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300249


Abstract: 
Smell that exists in the natural environment is composed of numerous odor molecules (Bushdid et al., 2014). The mammalian olfactory system can accurately identify environmental olfactory cues, including those related to food selection, recognition of conspecifics/predators, and emotional responses. Recent studies utilizing two-photon calcium imaging have demonstrated that odors, when present at their natural concentrations, elicit distinct patterns of neural activity within the olfactory system (Murthy and Rokni, 2017; Xu et al., 2020). However, knowledge of how food-related odors are coded in the olfactory system remains elusive.

自然气味信息在嗅球中的时空编码模式研究

刘梦雪1,2,3,姜楠1,2,石颖倩1,王平1,2,庄柳静1,3
1浙江大学生物医学工程与仪器科学学院, 生物传感器国家专业实验室, 生物医学工程教育部重点实验室, 中国杭州市,310027
2浙江大学教育部脑与脑机融合前沿科学中心,中国杭州市,310027
3中国科学院传感技术联合国家重点实验室,中国上海市,200050
摘要:气味是评价食品新鲜度最重要的参数之一。当气味以其自然浓度存在时,会在嗅觉系统中引发不同的神经活动模式。本研究提出了一种通过检测食物气味进行食物检测与评价的在体生物传感系统。我们通过将多通道微电极植入在清醒大鼠嗅球的僧帽/丛状细胞层上,进而对神经信号进行实时检测。结果表明,不同的气味可以引起不同的神经振荡活动,每个僧帽/丛状细胞会表现出特定气味的锋电位发放模式。单个大鼠的少量细胞携带足够的信息,可以根据锋电位发放频率变化率的极坐标图来区分不同储存天数的食物。此外,研究表明气味刺激后,β振荡比γ振荡表现出更特异的气味响应模式,这表明β振荡在气味识别中起着更重要的作用。综上,本研究提出的在体神经接口为评估食品新鲜度提供了一种可行性方法。

关键词:脑机接口;嗅球;锋电位活动;神经振荡

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BuckL, AxelR, 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65:175-187.

[2]BushdidC, MagnascoMO, VosshallLB, et al., 2014. Humans can discriminate more than 1 trillion olfactory stimuli. Science, 343(6177):1370-1372.

[3]KayLM, BeshelJ, 2010. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol, 104(2):829-839.

[4]KayLM, BeshelJ, BreaJ, et al., 2009. Olfactory oscillations: the what, how and what for. Trends Neurosci, 32(4):207-214.

[5]KimC, LeeKK, KangMS, et al., 2022. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater Res, 26:40.

[6]LepousezG, LledoPM, 2013. Odor discrimination requires proper olfactory fast oscillations in awake mice. Neuron, 80(4):1010-1024.

[7]LledoPM, GheusiG, VincentJD, 2005. Information processing in the mammalian olfactory system. Physiol Rev, 85(1):281-317.

[8]LosaccoJ, Ramirez-GordilloD, GilmerJ, et al., 2020. Learning improves decoding of odor identity with phase-referenced oscillations in the olfactory bulb. eLife, 9:e52583.

[9]MoriK, NagaoH, YoshiharaY, 1999. The olfactory bulb: coding and processing of odor molecule information. Science, 286(5440):711-715.

[10]MurthyVN, RokniD, 2017. Processing of odor mixtures in the mammalian olfactory system. J Indian Inst Sci, 97(4):415-421.

[11]SankaranS, KhotLR, PanigrahiS, 2012. Biology and applications of olfactory sensing system: a review. Sens Actuat B Chem, 171-172:1-17.

[12]XuL, LiWZ, VoletiV, et al., 2020. Widespread receptor-driven modulation in peripheral olfactory coding. Science, 368(6487):eaaz5390.

[13]ZhuangLJ, GuoTT, CaoDX, et al., 2015. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens Bioelectron, 67:694-699.

[14]ZhuangLJ, ZhangB, QinZ, et al., 2019. Nasal respiration is necessary for the generation of γ oscillation in the olfactory bulb. Neuroscience, 398:218-230.

[15]ZhuangLJ, WeiXW, JiangN, et al., 2021. A biohybrid nose for evaluation of odor masking in the peripheral olfactory system. Biosens Bioelectron, 171:112737.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE