CLC number: TP391.41
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-08-19
Cited: 0
Clicked: 7474
Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu. Scale-aware shape manipulation[J]. Journal of Zhejiang University Science C, 2014, 15(9): 764-775.
@article{title="Scale-aware shape manipulation",
author="Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="9",
pages="764-775",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400122"
}
%0 Journal Article
%T Scale-aware shape manipulation
%A Zheng Liu
%A Wei-ming Wang
%A Xiu-ping Liu
%A Li-gang Liu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 9
%P 764-775
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400122
TY - JOUR
T1 - Scale-aware shape manipulation
A1 - Zheng Liu
A1 - Wei-ming Wang
A1 - Xiu-ping Liu
A1 - Li-gang Liu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 9
SP - 764
EP - 775
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400122
Abstract: A novel representation of a triangular mesh surface using a set of scale-invariant measures is proposed. The measures consist of angles of the triangles (triangle angles) and dihedral angles along the edges (edge angles) which are scale and rigidity independent. The vertex coordinates for a mesh give its scale-invariant measures, unique up to scale, rotation, and translation. Based on the representation of mesh using scale-invariant measures, a two-step iterative deformation algorithm is proposed, which can arbitrarily edit the mesh through simple handles interaction. The algorithm can explicitly preserve the local geometric details as much as possible in different scales even under severe editing operations including rotation, scaling, and shearing. The efficiency and robustness of the proposed algorithm are demonstrated by examples.
[1]Au, O.K.C., Tai, C.L., Liu, L.G., et al., 2006. Dual Laplacian editing for meshes. IEEE Trans. Visual. Comput. Graph., 12(3):386-395.
[2]Bao, Y.F., Guo, X.H., Qin, H., 2005. Physically based morphing of point-sampled surfaces. Comput. Anim. Virt. Worlds, 16(3-4):509-518.
[3]Botsch, M., Kobbelt, L., 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 23(3):630-634.
[4]Botsch, M., Sorkine, O., 2008. On linear variational surface deformation methods. IEEE Trans. Visual. Comput. Graph., 14(1):213-230.
[5]Botsch, M., Pauly, M., Gross, M.H., et al., 2006. PriMo: coupled prisms for intuitive surface modeling. Proc. Symp. on Geometry Processing, p.11-20.
[6]Chao, I., Pinkall, U., Sanan, P., et al., 2010. A simple geometric model for elastic deformations. ACM Trans. Graph., 29(4):38:1-38:6.
[7]Chen, R.J., Weber, O., Keren, D., et al., 2013. Planar shape interpolation with bounded distortion. ACM Trans. Graph., 32(4), Article 108.
[8]Crane, K., Pinkall, U., Schroder, P., 2011. Spin transformations of discrete surfaces. ACM Trans. Graph., 30(4), Article 104.
[9]Frohlich, S., Botsch, M., 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum, 30(8):2246-2257.
[10]Gain, J., Bechmann, D., 2008. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 27(4), Article 107.
[11]Gao, L., Zhang, G.X., Lai, Y.K., 2012. Lp shape deformation. Sci. China Inform. Sci., 55(5):983-993.
[12]Grinspun, E., Hirani, A.N., Desbrun, M., et al., 2003. Discrete shells. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.62-67.
[13]Hu, S.M., Li, C.F., Zhang, H., 2004. Actual morphing: a physics-based approach to blending. Proc. 9th ACM Symp. on Solid Modeling and Applications, p.309-314.
[14]Igarashi, T., Moscovich, T., Hughes, J.F., 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph., 24(3):1134-1141.
[15]Jacobson, A., Baran, I., Popovic, J., et al., 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 30(4), Article 78.
[16]Kircher, S., Garland, M., 2008. Free-form motion processing. ACM Trans. Graph., 27(2), Article 12.
[17]Kobbelt, L., Campagna, S., Vorsatz, J., et al., 1998. Interactive multi-resolution modeling on arbitrary meshes. Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques, p.105-114.
[18]Levi, Z., Levin, D., 2014. Shape deformation via interior RBF. IEEE Trans. Visual. Comput. Graph., 20(7):1062-1075.
[19]Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph., 31(4), Article 108.
[20]Lipman, Y., Sorkine, O., Levin, D., et al., 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph., 24(3):479-487.
[21]Lipman, Y., Levin, D., Cohen-Or, D., 2008. Green coordinates. ACM Trans. Graph., 27(3), Article 78.
[22]Milliron, T., Jensen, R.J., Barzel, R., et al., 2002. A framework for geometric warps and deformations. ACM Trans. Graph., 21(1):20-51.
[23]Paries, N., Degener, P., Klein, R., 2007. Simple and efficient mesh editing with consistent local frames. Proc. 15th Pacific Conf. on Computer Graphics and Applications, p.461-464.
[24]Sheffer, A., Kraevoy, V., 2004. Pyramid coordinates for morphing and deformation. Proc. 2nd Int. Symp. on 3D Data Processing, Visualization and Transmission, p.68-75.
[25]Sorkine, O., Alexa, M., 2007. As-rigid-as-possible surface modeling. Symp. on Geometry Processing, p.109-116.
[26]Sorkine, O., Cohen-Or, D., Lipman, Y., et al., 2004. Laplacian surface editing. Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, p.175-184.
[27]Wang, Y., Liu, B., Tong, Y., 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. Comput. Graph. Forum, 31(8):2277-2287.
[28]Weber, O., Gotsman, C., 2010. Controllable conformal maps for shape deformation and interpolation. ACM Trans. Graph., 29(4), Article 78.
[29]Winkler, T., Drieseberg, J., Alexa, M., et al., 2010. Multi-scale geometry interpolation. Comput. Graph. Forum, 29(2):309-318.
[30]Yu, Y.Z., Zhou, K., Xu, D., et al., 2004. Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph., 23(3):644-651.
[31]Zhang, M., Zeng, W., Xin, S.Q., et al., 2012. Stable geodesic surface signatures. Tsinghua Sci. Technol., 17(4):471-480.
[32]Zorin, D., Schroder, P., Sweldens, W., 1997. Interactive multiresolution mesh editing. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.259-268.
Open peer comments: Debate/Discuss/Question/Opinion
<1>