Full Text:   <2510>

Summary:  <2172>

CLC number: TP391.41

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-19

Cited: 0

Clicked: 7474

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.9 P.764-775

http://doi.org/10.1631/jzus.C1400122


Scale-aware shape manipulation


Author(s):  Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu

Affiliation(s):  School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China; more

Corresponding email(s):   Liu.Zheng.jojo@gmail.com

Key Words:  Differential coordinates, Scale-invariant measures, Surface deformation


Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu. Scale-aware shape manipulation[J]. Journal of Zhejiang University Science C, 2014, 15(9): 764-775.

@article{title="Scale-aware shape manipulation",
author="Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="9",
pages="764-775",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400122"
}

%0 Journal Article
%T Scale-aware shape manipulation
%A Zheng Liu
%A Wei-ming Wang
%A Xiu-ping Liu
%A Li-gang Liu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 9
%P 764-775
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400122

TY - JOUR
T1 - Scale-aware shape manipulation
A1 - Zheng Liu
A1 - Wei-ming Wang
A1 - Xiu-ping Liu
A1 - Li-gang Liu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 9
SP - 764
EP - 775
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400122


Abstract: 
A novel representation of a triangular mesh surface using a set of scale-invariant measures is proposed. The measures consist of angles of the triangles (triangle angles) and dihedral angles along the edges (edge angles) which are scale and rigidity independent. The vertex coordinates for a mesh give its scale-invariant measures, unique up to scale, rotation, and translation. Based on the representation of mesh using scale-invariant measures, a two-step iterative deformation algorithm is proposed, which can arbitrarily edit the mesh through simple handles interaction. The algorithm can explicitly preserve the local geometric details as much as possible in different scales even under severe editing operations including rotation, scaling, and shearing. The efficiency and robustness of the proposed algorithm are demonstrated by examples.

尺度自动感知的几何体变形技术

研究目的:针对三角形网格的大尺度形变,提出一种基于尺度不变量的变形技术。
研究方法:针对三角形网格中基于顶点--领域的局部微分坐标,提出一套尺度不变的几何量(图1)。基于这套几何不变量,给出尺度自适应的几何体变形能量(方程6)。该复杂方程难以直接求解;为有效求解,利用分离变量原理,设计了一个两步迭代算法(算法1)。将此算法获得的几何变形结果与多种知名的几何变形算法进行比较(图9~11)。最后展示了一系列利用我们的算法进行网格变形的结果(图12~14)。
重要结论:针对三角形网格微分坐标中的尺度不变量,提出了一种新颖的基于尺度不变度量的网格变形技术,使得几何体在大尺度形变过程中能够有效保持几何细节不变。
微分几何坐标;尺度不变的度量;网格变形

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Au, O.K.C., Tai, C.L., Liu, L.G., et al., 2006. Dual Laplacian editing for meshes. IEEE Trans. Visual. Comput. Graph., 12(3):386-395.

[2]Bao, Y.F., Guo, X.H., Qin, H., 2005. Physically based morphing of point-sampled surfaces. Comput. Anim. Virt. Worlds, 16(3-4):509-518.

[3]Botsch, M., Kobbelt, L., 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 23(3):630-634.

[4]Botsch, M., Sorkine, O., 2008. On linear variational surface deformation methods. IEEE Trans. Visual. Comput. Graph., 14(1):213-230.

[5]Botsch, M., Pauly, M., Gross, M.H., et al., 2006. PriMo: coupled prisms for intuitive surface modeling. Proc. Symp. on Geometry Processing, p.11-20.

[6]Chao, I., Pinkall, U., Sanan, P., et al., 2010. A simple geometric model for elastic deformations. ACM Trans. Graph., 29(4):38:1-38:6.

[7]Chen, R.J., Weber, O., Keren, D., et al., 2013. Planar shape interpolation with bounded distortion. ACM Trans. Graph., 32(4), Article 108.

[8]Crane, K., Pinkall, U., Schroder, P., 2011. Spin transformations of discrete surfaces. ACM Trans. Graph., 30(4), Article 104.

[9]Frohlich, S., Botsch, M., 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum, 30(8):2246-2257.

[10]Gain, J., Bechmann, D., 2008. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 27(4), Article 107.

[11]Gao, L., Zhang, G.X., Lai, Y.K., 2012. Lp shape deformation. Sci. China Inform. Sci., 55(5):983-993.

[12]Grinspun, E., Hirani, A.N., Desbrun, M., et al., 2003. Discrete shells. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.62-67.

[13]Hu, S.M., Li, C.F., Zhang, H., 2004. Actual morphing: a physics-based approach to blending. Proc. 9th ACM Symp. on Solid Modeling and Applications, p.309-314.

[14]Igarashi, T., Moscovich, T., Hughes, J.F., 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph., 24(3):1134-1141.

[15]Jacobson, A., Baran, I., Popovic, J., et al., 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 30(4), Article 78.

[16]Kircher, S., Garland, M., 2008. Free-form motion processing. ACM Trans. Graph., 27(2), Article 12.

[17]Kobbelt, L., Campagna, S., Vorsatz, J., et al., 1998. Interactive multi-resolution modeling on arbitrary meshes. Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques, p.105-114.

[18]Levi, Z., Levin, D., 2014. Shape deformation via interior RBF. IEEE Trans. Visual. Comput. Graph., 20(7):1062-1075.

[19]Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph., 31(4), Article 108.

[20]Lipman, Y., Sorkine, O., Levin, D., et al., 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph., 24(3):479-487.

[21]Lipman, Y., Levin, D., Cohen-Or, D., 2008. Green coordinates. ACM Trans. Graph., 27(3), Article 78.

[22]Milliron, T., Jensen, R.J., Barzel, R., et al., 2002. A framework for geometric warps and deformations. ACM Trans. Graph., 21(1):20-51.

[23]Paries, N., Degener, P., Klein, R., 2007. Simple and efficient mesh editing with consistent local frames. Proc. 15th Pacific Conf. on Computer Graphics and Applications, p.461-464.

[24]Sheffer, A., Kraevoy, V., 2004. Pyramid coordinates for morphing and deformation. Proc. 2nd Int. Symp. on 3D Data Processing, Visualization and Transmission, p.68-75.

[25]Sorkine, O., Alexa, M., 2007. As-rigid-as-possible surface modeling. Symp. on Geometry Processing, p.109-116.

[26]Sorkine, O., Cohen-Or, D., Lipman, Y., et al., 2004. Laplacian surface editing. Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, p.175-184.

[27]Wang, Y., Liu, B., Tong, Y., 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. Comput. Graph. Forum, 31(8):2277-2287.

[28]Weber, O., Gotsman, C., 2010. Controllable conformal maps for shape deformation and interpolation. ACM Trans. Graph., 29(4), Article 78.

[29]Winkler, T., Drieseberg, J., Alexa, M., et al., 2010. Multi-scale geometry interpolation. Comput. Graph. Forum, 29(2):309-318.

[30]Yu, Y.Z., Zhou, K., Xu, D., et al., 2004. Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph., 23(3):644-651.

[31]Zhang, M., Zeng, W., Xin, S.Q., et al., 2012. Stable geodesic surface signatures. Tsinghua Sci. Technol., 17(4):471-480.

[32]Zorin, D., Schroder, P., Sweldens, W., 1997. Interactive multiresolution mesh editing. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.259-268.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE