CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-06-06
Cited: 1
Clicked: 7315
Yao-ye Zhang, Zheng-xing Sun, Kai Liu, Mo-fei Song, Fei-qian Zhang. Extracting 3D model feature lines based on conditional random fields[J]. Journal of Zhejiang University Science C, 2013, 14(7): 551-560.
@article{title="Extracting 3D model feature lines based on conditional random fields",
author="Yao-ye Zhang, Zheng-xing Sun, Kai Liu, Mo-fei Song, Fei-qian Zhang",
journal="Journal of Zhejiang University Science C",
volume="14",
number="7",
pages="551-560",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.CIDE1308"
}
%0 Journal Article
%T Extracting 3D model feature lines based on conditional random fields
%A Yao-ye Zhang
%A Zheng-xing Sun
%A Kai Liu
%A Mo-fei Song
%A Fei-qian Zhang
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 7
%P 551-560
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.CIDE1308
TY - JOUR
T1 - Extracting 3D model feature lines based on conditional random fields
A1 - Yao-ye Zhang
A1 - Zheng-xing Sun
A1 - Kai Liu
A1 - Mo-fei Song
A1 - Fei-qian Zhang
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 7
SP - 551
EP - 560
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.CIDE1308
Abstract: We propose a 3D model feature line extraction method using templates for guidance. The 3D model is first projected into a depth map, and a set of candidate feature points are extracted. Then, a conditional random fields (CRF) model is established to match the sketch points and the candidate feature points. Using sketch strokes, the candidate feature points can then be connected to obtain the feature lines, and using a CRF-matching model, the 2D image shape similarity features and 3D model geometric features can be effectively integrated. Finally, a relational metric based on shape and topological similarity is proposed to evaluate the matching results, and an iterative matching process is applied to obtain the globally optimized model feature lines. Experimental results showed that the proposed method can extract sound 3D model feature lines which correspond to the initial sketch template.
[1]Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6):679-698.
[2]Catalano, C.E., Mortara, M., Spagnuolo, M., Falcidieno, B., 2011. Semantics and 3D media: current issues and perspectives. Comput. Graph., 35(4):869-877.
[3]Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finikelstein, A., Funkhouser, T., Rusinkiewicz, S., 2008. Where do people draw lines? ACM Trans. Graph., 27(3), Article 88, p.1-11.
[4]DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A., 2003. Suggestive contours for conveying shape. ACM Trans. Graph., 22(3):848-855.
[5]Hertzmann, A., 1999. Introduction to 3D Non-photorealistic Rendering: Silhouettes and Outlines. ACM SIGGRAPH Course Notes, p.15-29.
[6]Hertzmann, A., 2010. Non-photorealistic Rendering and the Science of Art. Proc. 8th Int. Symp. on Non-photorealistic Animation and Rendering, p.147-157.
[7]Interrante, V., Fuchs, H., Pizer, S., 1995. Enhancing Transparent Skin Surfaces with Ridge and Valley Lines. Proc. 6th Conf. on Visualization, p.52-59.
[8]Judd, T., Durand, F., Adelson, E.H., 2007. Apparent ridges for line drawing. ACM Trans. Graph., 26(3), Article 19.
[9]Kalogerakis, E., Nowrouzezahrai, D., Simari, P., McCrae, J., Hertzmann, A., Singh, K., 2009. Data-driven curvature for real-time line drawing of dynamic scenes. ACM Trans. Graph., 28(1), Article 11, p.1-13.
[10]Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., Hertzmann, A., 2012. Learning hatching for pen-and-ink illustration of surfaces. ACM Trans. Graph., 31(1), Article 1, p.1-17.
[11]Kraevoy, V., Sheffer, A., Michiel, P., 2009. Modeling from Contour Drawings. Proc. 6th Eurographics Symp. on Sketch-Based Interfaces and Modeling, p.37-44.
[12]Lafferty, J., McCallum, A., Pereira, F., 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proc. 18th Int. Conf. on Machine Learning, p.282-289.
[13]Lee, Y., Markosian, L., Lee, S., Hughes, J.F., 2007. Line drawings via abstracted shading. ACM Trans. Graph., 26(3), Article 18, p.1-6.
[14]Lum, E.B., Ma, K.L., 2005. Expressive line selection by example. Vis. Comput., 21(8-10):811-820.
[15]Mao, C., Qin, S.F., Wright, D., 2009. A sketch-based approach to human body modeling. Comput. Graph., 33(4):521-541.
[16]Murphy, K., Weiss, Y., Jordan, M., 1999. Loopy Belief Propagation for Approximate Inference: an Empirical Study. Proc. Conf. on Uncertainty in Artificial Intelligence, p.467-475.
[17]Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A., 2009. Sketch-based modeling: a survey. Comput. Graph., 33(1):85-103.
[18]Ramos, F., Fox, D., Durrant, W.H., 2007. CRF-Matching: Conditional Random Fields for Feature-Based Scan Matching. Proc. Robotics: Science and Systems, p.201-208.
[19]Saito, T., Takahashi, T., 1990. Comprehensible Rendering of 3-D Shapes. ACM SIGGRAPH Comput. Graph., 24(4):197-206.
Open peer comments: Debate/Discuss/Question/Opinion
<1>