CLC number: O174.5
On-line Access: 2015-08-04
Received: 2015-03-18
Revision Accepted: 2015-06-01
Crosschecked: 2015-07-08
Cited: 0
Clicked: 6820
Chun-jie Zhang, Fang-fang Ren, Yu-huai Zhang, Gui-lian Gao. Boundedness of Marcinkiewicz integral with rough kernel on Triebel-Lizorkin spaces[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(8): 654-657.
@article{title="Boundedness of Marcinkiewicz integral with rough kernel on Triebel-Lizorkin spaces",
author="Chun-jie Zhang, Fang-fang Ren, Yu-huai Zhang, Gui-lian Gao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="8",
pages="654-657",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500082"
}
%0 Journal Article
%T Boundedness of Marcinkiewicz integral with rough kernel on Triebel-Lizorkin spaces
%A Chun-jie Zhang
%A Fang-fang Ren
%A Yu-huai Zhang
%A Gui-lian Gao
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 8
%P 654-657
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500082
TY - JOUR
T1 - Boundedness of Marcinkiewicz integral with rough kernel on Triebel-Lizorkin spaces
A1 - Chun-jie Zhang
A1 - Fang-fang Ren
A1 - Yu-huai Zhang
A1 - Gui-lian Gao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 8
SP - 654
EP - 657
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500082
Abstract: This paper is a continuation of our previous work (Zhang and Chen, 2010b). Following the same general steps of the proof there, we make essential improvement on our previous theorem by recalculating a key inequality. Our result shows that the marcinkiewicz integral, with a bounded radial function in its kernel, is still bounded on the Triebel-Lizorkin space.
The paper studies the boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces, it is new and interesting in harmonic analysis.
[1]Al-Qassem, H.M., Cheng, L.C., Pan, Y., 2012. Boundedness of rough integral operators on Triebel-Lizorkin spaces. Publ. Mat., 56(2):261-277.
[2]Chen, D.N., Chen, J.C., Fan, D.S., 2005. Rough singular integral operators on Hardy-Sobolev spaces. Appl. Math. J. Chin. Univ., 20(1):1-9.
[3]Chen, J.C., Zhang, C.J., 2008. Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces. J. Math. Anal. Appl., 337(2):1048-1052.
[4]Chen, J.C., Fan, D.S., Ying, Y.M., 2002. Singular integral operators on function spaces. J. Math. Anal. Appl., 276(2):691-708.
[5]Chen, J.C., Fan, D.S., Ying, Y.M., 2003. Certain operators with rough singular kernels. Can. J. Math., 55(3): 504-532.
[6]Chen, J.C., Jia, H.Y., Jiang, L.Y., 2005. Boundedness of rough oscillatory singular integral on Triebel-Lizorkin spaces. J. Math. Anal. Appl., 306(2):385-397.
[7]Chen, Q.L., Zhang, Z.F., 2004. Boundedness of a class of super singular integral operators and the associated commutators. Sci. China Ser. A, 47(6):842-853.
[8]Chen, Y.P., Ding, Y., 2008. Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl., 347(2):493-501.
[9]Chen, Y.P., Zhu, K., 2014. Lp bounds for the commutators of oscillatory singular integrals with rough kernels. Abs. Appl. Anal., 2014:393147.1-393147.8.
[10]Zhang, C.J., Chen, J.C., 2009. Boundedness of g-functions on Triebel-Lizorkin spaces. Taiwan. J. Math., 13(3):973-981.
[11]Zhang, C.J., Chen, J.C., 2010a. Boundedness of singular integrals and maximal singular integrals on Triebel-Lizorkin spaces. Int. J. Math., 21(2):157-168.
[12]Zhang, C.J., Chen, J.C., 2010b. Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces. Appl. Math. J. Chin. Univ., 25(1):48-54.
[13]Zhang, C.J., Zhang, Y.D., 2013. Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces. Appl. Math. J. Chin. Univ., 28(1):90-100.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
jzus_b<jzus_b@zju.edu.cn>
2015-09-18 14:02:26
Test to see is everything is ok